Kinesis and Elasticsearch Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
The Kinesis plugin enables you to read from Kinesis data streams, supporting various data formats and configurations.
The Telegraf Elasticsearch Plugin seamlessly sends metrics to an Elasticsearch server. The plugin handles template creation and dynamic index management, and supports various Elasticsearch-specific features to ensure data is formatted correctly for storage and retrieval.
Integration details
Kinesis
This plugin reads from a Kinesis data stream and creates metrics using supported input data formats. It supports various configuration options for AWS Kinesis and DynamoDB checkpointing.
Elasticsearch
This plugin writes metrics to Elasticsearch, a distributed, RESTful search and analytics engine capable of storing large amounts of data in near real-time. It is designed to handle Elasticsearch versions 5.x through 7.x and utilizes its dynamic template features to manage data type mapping properly. The plugin supports advanced features such as template management, dynamic index naming, and integration with OpenSearch. It also allows configurations for authentication and health monitoring of the Elasticsearch nodes.
Configuration
Kinesis
# Configuration for the AWS Kinesis input.
[[inputs.kinesis_consumer]]
## Amazon REGION of kinesis endpoint.
region = "ap-southeast-2"
## Amazon Credentials
## Credentials are loaded in the following order
## 1) Web identity provider credentials via STS if role_arn and web_identity_token_file are specified
## 2) Assumed credentials via STS if role_arn is specified
## 3) explicit credentials from 'access_key' and 'secret_key'
## 4) shared profile from 'profile'
## 5) environment variables
## 6) shared credentials file
## 7) EC2 Instance Profile
# access_key = ""
# secret_key = ""
# token = ""
# role_arn = ""
# web_identity_token_file = ""
# role_session_name = ""
# profile = ""
# shared_credential_file = ""
## Endpoint to make request against, the correct endpoint is automatically
## determined and this option should only be set if you wish to override the
## default.
## ex: endpoint_url = "http://localhost:8000"
# endpoint_url = ""
## Kinesis StreamName must exist prior to starting telegraf.
streamname = "StreamName"
## Shard iterator type (only 'TRIM_HORIZON' and 'LATEST' currently supported)
# shard_iterator_type = "TRIM_HORIZON"
## Max undelivered messages
## This plugin uses tracking metrics, which ensure messages are read to
## outputs before acknowledging them to the original broker to ensure data
## is not lost. This option sets the maximum messages to read from the
## broker that have not been written by an output.
##
## This value needs to be picked with awareness of the agent's
## metric_batch_size value as well. Setting max undelivered messages too high
## can result in a constant stream of data batches to the output. While
## setting it too low may never flush the broker's messages.
# max_undelivered_messages = 1000
## Data format to consume.
## Each data format has its own unique set of configuration options, read
## more about them here:
## https://github.com/influxdata/telegraf/blob/master/docs/DATA_FORMATS_INPUT.md
data_format = "influx"
##
## The content encoding of the data from kinesis
## If you are processing a cloudwatch logs kinesis stream then set this to "gzip"
## as AWS compresses cloudwatch log data before it is sent to kinesis (aws
## also base64 encodes the zip byte data before pushing to the stream. The base64 decoding
## is done automatically by the golang sdk, as data is read from kinesis)
##
# content_encoding = "identity"
## Optional
## Configuration for a dynamodb checkpoint
[inputs.kinesis_consumer.checkpoint_dynamodb]
## unique name for this consumer
app_name = "default"
table_name = "default"
Elasticsearch
[[outputs.elasticsearch]]
## The full HTTP endpoint URL for your Elasticsearch instance
## Multiple urls can be specified as part of the same cluster,
## this means that only ONE of the urls will be written to each interval
urls = [ "http://node1.es.example.com:9200" ] # required.
## Elasticsearch client timeout, defaults to "5s" if not set.
timeout = "5s"
## Set to true to ask Elasticsearch a list of all cluster nodes,
## thus it is not necessary to list all nodes in the urls config option
enable_sniffer = false
## Set to true to enable gzip compression
enable_gzip = false
## Set the interval to check if the Elasticsearch nodes are available
## Setting to "0s" will disable the health check (not recommended in production)
health_check_interval = "10s"
## Set the timeout for periodic health checks.
# health_check_timeout = "1s"
## HTTP basic authentication details.
## HTTP basic authentication details
# username = "telegraf"
# password = "mypassword"
## HTTP bearer token authentication details
# auth_bearer_token = "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9"
## Index Config
## The target index for metrics (Elasticsearch will create if it not exists).
## You can use the date specifiers below to create indexes per time frame.
## The metric timestamp will be used to decide the destination index name
# %Y - year (2016)
# %y - last two digits of year (00..99)
# %m - month (01..12)
# %d - day of month (e.g., 01)
# %H - hour (00..23)
# %V - week of the year (ISO week) (01..53)
## Additionally, you can specify a tag name using the notation {{tag_name}}
## which will be used as part of the index name. If the tag does not exist,
## the default tag value will be used.
# index_name = "telegraf-{{host}}-%Y.%m.%d"
# default_tag_value = "none"
index_name = "telegraf-%Y.%m.%d" # required.
## Optional Index Config
## Set to true if Telegraf should use the "create" OpType while indexing
# use_optype_create = false
## Optional TLS Config
# tls_ca = "/etc/telegraf/ca.pem"
# tls_cert = "/etc/telegraf/cert.pem"
# tls_key = "/etc/telegraf/key.pem"
## Use TLS but skip chain & host verification
# insecure_skip_verify = false
## Template Config
## Set to true if you want telegraf to manage its index template.
## If enabled it will create a recommended index template for telegraf indexes
manage_template = true
## The template name used for telegraf indexes
template_name = "telegraf"
## Set to true if you want telegraf to overwrite an existing template
overwrite_template = false
## If set to true a unique ID hash will be sent as sha256(concat(timestamp,measurement,series-hash)) string
## it will enable data resend and update metric points avoiding duplicated metrics with different id's
force_document_id = false
## Specifies the handling of NaN and Inf values.
## This option can have the following values:
## none -- do not modify field-values (default); will produce an error if NaNs or infs are encountered
## drop -- drop fields containing NaNs or infs
## replace -- replace with the value in "float_replacement_value" (default: 0.0)
## NaNs and inf will be replaced with the given number, -inf with the negative of that number
# float_handling = "none"
# float_replacement_value = 0.0
## Pipeline Config
## To use a ingest pipeline, set this to the name of the pipeline you want to use.
# use_pipeline = "my_pipeline"
## Additionally, you can specify a tag name using the notation {{tag_name}}
## which will be used as part of the pipeline name. If the tag does not exist,
## the default pipeline will be used as the pipeline. If no default pipeline is set,
## no pipeline is used for the metric.
# use_pipeline = "{{es_pipeline}}"
# default_pipeline = "my_pipeline"
#
# Custom HTTP headers
# To pass custom HTTP headers please define it in a given below section
# [outputs.elasticsearch.headers]
# "X-Custom-Header" = "custom-value"
## Template Index Settings
## Overrides the template settings.index section with any provided options.
## Defaults provided here in the config
# template_index_settings = {
# refresh_interval = "10s",
# mapping.total_fields.limit = 5000,
# auto_expand_replicas = "0-1",
# codec = "best_compression"
# }
Input and output integration examples
Kinesis
- Basic Configuration: Set up the Kinesis Consumer to read from a specific stream in a specified AWS region.
- Checkpointing: Use DynamoDB to checkpoint processed records to ensure data is not lost during stream consumption.
- Data Format Management: Configure the plugin to handle different data formats, allowing for flexibility in how data is ingested.
Elasticsearch
-
Time-based Indexing: Use this plugin to store metrics in Elasticsearch to index each metric based on the time collected. For example, CPU metrics can be stored in a daily index named <code
telegraf-2023.01.01
, allowing easy time-based queries and retention policies. -
Dynamic Templates Management: Utilize the template management feature to automatically create a custom template tailored to your metrics. This allows you to define how different fields are indexed and analyzed without manually configuring Elasticsearch, ensuring an optimal data structure for querying.
-
OpenSearch Compatibility: If you are using AWS OpenSearch, you can configure this plugin to work seamlessly by activating compatibility mode, ensuring your existing Elasticsearch clients remain functional and compatible with newer cluster setups.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationMQTT and InfluxDB Integration
The MQTT plugin is a service input for reading metrics from specified MQTT topics. It supports various data formats and configuration options for reliable message consumption.
View Integration