Kinesis and Dynatrace Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
The Kinesis plugin enables you to read from Kinesis data streams, supporting various data formats and configurations.
The Dynatrace plugin allows users to send metrics collected by Telegraf directly to Dynatrace for monitoring and analysis. This integration enhances the observability of systems and applications, providing valuable insights into performance and operational health.
Integration details
Kinesis
The Kinesis Telegraf plugin is designed to read from Amazon Kinesis data streams, enabling users to gather metrics in real-time. As a service input plugin, it operates by listening for incoming data rather than polling at regular intervals. The configuration specifies various options including the AWS region, stream name, authentication credentials, and data formats. It supports tracking of undelivered messages to prevent data loss, and users can utilize DynamoDB for maintaining checkpoints of the last processed records. This plugin is particularly useful for applications requiring reliable and scalable stream processing alongside other monitoring needs.
Dynatrace
The Dynatrace plugin for Telegraf facilitates the transmission of metrics to the Dynatrace platform via the Dynatrace Metrics API V2. This plugin can function in two modes: it can run alongside the Dynatrace OneAgent, which automates authentication, or it can operate in a standalone configuration that requires manual specification of the URL and API token for environments without a OneAgent. The plugin primarily reports metrics as gauges unless explicitly configured to treat certain metrics as delta counters using the available config options. This feature empowers users to customize the behavior of metrics sent to Dynatrace, harnessing the robust capabilities of the platform for comprehensive performance monitoring and observability. It’s crucial for users to ensure compliance with version requirements for both Dynatrace and Telegraf, thereby optimizing compatibility and performance when integrating with the Dynatrace ecosystem.
Configuration
Kinesis
# Configuration for the AWS Kinesis input.
[[inputs.kinesis_consumer]]
## Amazon REGION of kinesis endpoint.
region = "ap-southeast-2"
## Amazon Credentials
## Credentials are loaded in the following order
## 1) Web identity provider credentials via STS if role_arn and web_identity_token_file are specified
## 2) Assumed credentials via STS if role_arn is specified
## 3) explicit credentials from 'access_key' and 'secret_key'
## 4) shared profile from 'profile'
## 5) environment variables
## 6) shared credentials file
## 7) EC2 Instance Profile
# access_key = ""
# secret_key = ""
# token = ""
# role_arn = ""
# web_identity_token_file = ""
# role_session_name = ""
# profile = ""
# shared_credential_file = ""
## Endpoint to make request against, the correct endpoint is automatically
## determined and this option should only be set if you wish to override the
## default.
## ex: endpoint_url = "http://localhost:8000"
# endpoint_url = ""
## Kinesis StreamName must exist prior to starting telegraf.
streamname = "StreamName"
## Shard iterator type (only 'TRIM_HORIZON' and 'LATEST' currently supported)
# shard_iterator_type = "TRIM_HORIZON"
## Max undelivered messages
## This plugin uses tracking metrics, which ensure messages are read to
## outputs before acknowledging them to the original broker to ensure data
## is not lost. This option sets the maximum messages to read from the
## broker that have not been written by an output.
##
## This value needs to be picked with awareness of the agent's
## metric_batch_size value as well. Setting max undelivered messages too high
## can result in a constant stream of data batches to the output. While
## setting it too low may never flush the broker's messages.
# max_undelivered_messages = 1000
## Data format to consume.
## Each data format has its own unique set of configuration options, read
## more about them here:
## https://github.com/influxdata/telegraf/blob/master/docs/DATA_FORMATS_INPUT.md
data_format = "influx"
##
## The content encoding of the data from kinesis
## If you are processing a cloudwatch logs kinesis stream then set this to "gzip"
## as AWS compresses cloudwatch log data before it is sent to kinesis (aws
## also base64 encodes the zip byte data before pushing to the stream. The base64 decoding
## is done automatically by the golang sdk, as data is read from kinesis)
##
# content_encoding = "identity"
## Optional
## Configuration for a dynamodb checkpoint
[inputs.kinesis_consumer.checkpoint_dynamodb]
## unique name for this consumer
app_name = "default"
table_name = "default"
Dynatrace
[[outputs.dynatrace]]
## For usage with the Dynatrace OneAgent you can omit any configuration,
## the only requirement is that the OneAgent is running on the same host.
## Only setup environment url and token if you want to monitor a Host without the OneAgent present.
##
## Your Dynatrace environment URL.
## For Dynatrace OneAgent you can leave this empty or set it to "http://127.0.0.1:14499/metrics/ingest" (default)
## For Dynatrace SaaS environments the URL scheme is "https://{your-environment-id}.live.dynatrace.com/api/v2/metrics/ingest"
## For Dynatrace Managed environments the URL scheme is "https://{your-domain}/e/{your-environment-id}/api/v2/metrics/ingest"
url = ""
## Your Dynatrace API token.
## Create an API token within your Dynatrace environment, by navigating to Settings > Integration > Dynatrace API
## The API token needs data ingest scope permission. When using OneAgent, no API token is required.
api_token = ""
## Optional prefix for metric names (e.g.: "telegraf")
prefix = "telegraf"
## Optional TLS Config
# tls_ca = "/etc/telegraf/ca.pem"
# tls_cert = "/etc/telegraf/cert.pem"
# tls_key = "/etc/telegraf/key.pem"
## Optional flag for ignoring tls certificate check
# insecure_skip_verify = false
## Connection timeout, defaults to "5s" if not set.
timeout = "5s"
## If you want metrics to be treated and reported as delta counters, add the metric names here
additional_counters = [ ]
## In addition or as an alternative to additional_counters, if you want metrics to be treated and
## reported as delta counters using regular expression pattern matching
additional_counters_patterns = [ ]
## NOTE: Due to the way TOML is parsed, tables must be at the END of the
## plugin definition, otherwise additional config options are read as part of the
## table
## Optional dimensions to be added to every metric
# [outputs.dynatrace.default_dimensions]
# default_key = "default value"
Input and output integration examples
Kinesis
-
Real-Time Data Processing with Kinesis: This use case involves integrating the Kinesis plugin with a monitoring dashboard to analyze incoming data metrics in real-time. For instance, an application could consume logs from multiple services and present them visually, allowing operations teams to quickly identify trends and react to anomalies as they occur.
-
Serverless Log Aggregation: Utilize this plugin in a serverless architecture where Kinesis streams aggregate logs from various microservices. The plugin can create metrics that help detect issues in the system, automating alerting processes through third-party integrations, enabling teams to minimize downtime and improve reliability.
-
Dynamic Scaling Based on Stream Metrics: Implement a solution where stream metrics consumed by the Kinesis plugin could be used to adjust resources dynamically. For example, if the number of records processed spikes, corresponding scale-up actions could be triggered to handle the increased load, ensuring optimal resource allocation and performance.
-
Data Pipeline to S3 with Checkpointing: Create a robust data pipeline where Kinesis stream data is processed through the Telegraf Kinesis plugin, with checkpoints stored in DynamoDB. This approach can ensure data consistency and reliability, as it manages the state of processed data, enabling seamless integration with downstream data lakes or storage solutions.
Dynatrace
-
Cloud Infrastructure Monitoring: Utilize the Dynatrace plugin to monitor a cloud infrastructure setup, feeding real-time metrics from Telegraf into Dynatrace. This integration provides a holistic view of resource utilization, application performance, and system health, enabling proactive responses to performance issues across various cloud environments.
-
Custom Application Performance Metrics: Implement custom application-specific metrics by configuring the Dynatrace output plugin to send tailored metrics from Telegraf. By leveraging additional counters and dimension options, development teams can gain insights that are precisely aligned with their application’s operational requirements, allowing for targeted optimization efforts.
-
Multi-Environment Metrics Management: For organizations running multiple Dynatrace environments (e.g., production, staging, and development), use this plugin to manage metrics for all environments from a single Telegraf instance. With proper configuration of endpoints and API tokens, teams can maintain consistent monitoring practices throughout the SDLC, ensuring that performance anomalies are detected early in the development process.
-
Automated Alerting Based on Metrics Changes: Integrate the Dynatrace output plugin with an alerting mechanism that triggers notifications when specific metrics exceed defined thresholds. This scenario involves configuring additional counters to monitor crucial application performance indicators, enabling swift remediation actions to maintain service availability and user satisfaction.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration