Kafka and OpenSearch Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
This plugin allows you to gather metrics from Kafka topics in real-time, enhancing data monitoring and collection capabilities within your Telegraf setup.
The OpenSearch Output Plugin allows users to send metrics directly to an OpenSearch instance using HTTP, thus facilitating effective data management and analytics within the OpenSearch ecosystem.
Integration details
Kafka
The Kafka Telegraf plugin is designed to read data from Kafka topics and create metrics using supported input data formats. As a service input plugin, it listens continuously for incoming metrics and events, differing from standard input plugins that operate at fixed intervals. This particular plugin can utilize features from various Kafka versions and is capable of consuming messages from specified topics, applying configurations such as security credentials using SASL, and managing message processing with options for message offsets and consumer groups. The flexibility of this plugin allows it to handle a wide array of message formats and use cases, making it a valuable asset for applications relying on Kafka for data ingestion.
OpenSearch
The OpenSearch Telegraf Plugin integrates with the OpenSearch database via HTTP, allowing for the streamlined collection and storage of metrics. As a powerful tool designed specifically for OpenSearch releases from 2.x, the plugin provides robust features while offering compatibility with 1.x through the original Elasticsearch plugin. This plugin facilitates the creation and management of indexes in OpenSearch, automatically managing templates and ensuring that data is structured efficiently for analysis. The plugin supports various configuration options such as index names, authentication, health checks, and value handling, allowing it to be tailored to diverse operational requirements. Its capabilities make it essential for organizations looking to harness the power of OpenSearch for metrics storage and querying.
Configuration
Kafka
[[inputs.kafka_consumer]]
## Kafka brokers.
brokers = ["localhost:9092"]
## Set the minimal supported Kafka version. Should be a string contains
## 4 digits in case if it is 0 version and 3 digits for versions starting
## from 1.0.0 separated by dot. This setting enables the use of new
## Kafka features and APIs. Must be 0.10.2.0(used as default) or greater.
## Please, check the list of supported versions at
## https://pkg.go.dev/github.com/Shopify/sarama#SupportedVersions
## ex: kafka_version = "2.6.0"
## ex: kafka_version = "0.10.2.0"
# kafka_version = "0.10.2.0"
## Topics to consume.
topics = ["telegraf"]
## Topic regular expressions to consume. Matches will be added to topics.
## Example: topic_regexps = [ "*test", "metric[0-9A-z]*" ]
# topic_regexps = [ ]
## When set this tag will be added to all metrics with the topic as the value.
# topic_tag = ""
## The list of Kafka message headers that should be pass as metric tags
## works only for Kafka version 0.11+, on lower versions the message headers
## are not available
# msg_headers_as_tags = []
## The name of kafka message header which value should override the metric name.
## In case when the same header specified in current option and in msg_headers_as_tags
## option, it will be excluded from the msg_headers_as_tags list.
# msg_header_as_metric_name = ""
## Set metric(s) timestamp using the given source.
## Available options are:
## metric -- do not modify the metric timestamp
## inner -- use the inner message timestamp (Kafka v0.10+)
## outer -- use the outer (compressed) block timestamp (Kafka v0.10+)
# timestamp_source = "metric"
## Optional Client id
# client_id = "Telegraf"
## Optional TLS Config
# enable_tls = false
# tls_ca = "/etc/telegraf/ca.pem"
# tls_cert = "/etc/telegraf/cert.pem"
# tls_key = "/etc/telegraf/key.pem"
## Use TLS but skip chain & host verification
# insecure_skip_verify = false
## Period between keep alive probes.
## Defaults to the OS configuration if not specified or zero.
# keep_alive_period = "15s"
## SASL authentication credentials. These settings should typically be used
## with TLS encryption enabled
# sasl_username = "kafka"
# sasl_password = "secret"
## Optional SASL:
## one of: OAUTHBEARER, PLAIN, SCRAM-SHA-256, SCRAM-SHA-512, GSSAPI
## (defaults to PLAIN)
# sasl_mechanism = ""
## used if sasl_mechanism is GSSAPI
# sasl_gssapi_service_name = ""
# ## One of: KRB5_USER_AUTH and KRB5_KEYTAB_AUTH
# sasl_gssapi_auth_type = "KRB5_USER_AUTH"
# sasl_gssapi_kerberos_config_path = "/"
# sasl_gssapi_realm = "realm"
# sasl_gssapi_key_tab_path = ""
# sasl_gssapi_disable_pafxfast = false
## used if sasl_mechanism is OAUTHBEARER
# sasl_access_token = ""
## SASL protocol version. When connecting to Azure EventHub set to 0.
# sasl_version = 1
# Disable Kafka metadata full fetch
# metadata_full = false
## Name of the consumer group.
# consumer_group = "telegraf_metrics_consumers"
## Compression codec represents the various compression codecs recognized by
## Kafka in messages.
## 0 : None
## 1 : Gzip
## 2 : Snappy
## 3 : LZ4
## 4 : ZSTD
# compression_codec = 0
## Initial offset position; one of "oldest" or "newest".
# offset = "oldest"
## Consumer group partition assignment strategy; one of "range", "roundrobin" or "sticky".
# balance_strategy = "range"
## Maximum number of retries for metadata operations including
## connecting. Sets Sarama library's Metadata.Retry.Max config value. If 0 or
## unset, use the Sarama default of 3,
# metadata_retry_max = 0
## Type of retry backoff. Valid options: "constant", "exponential"
# metadata_retry_type = "constant"
## Amount of time to wait before retrying. When metadata_retry_type is
## "constant", each retry is delayed this amount. When "exponential", the
## first retry is delayed this amount, and subsequent delays are doubled. If 0
## or unset, use the Sarama default of 250 ms
# metadata_retry_backoff = 0
## Maximum amount of time to wait before retrying when metadata_retry_type is
## "exponential". Ignored for other retry types. If 0, there is no backoff
## limit.
# metadata_retry_max_duration = 0
## When set to true, this turns each bootstrap broker address into a set of
## IPs, then does a reverse lookup on each one to get its canonical hostname.
## This list of hostnames then replaces the original address list.
## resolve_canonical_bootstrap_servers_only = false
## Strategy for making connection to kafka brokers. Valid options: "startup",
## "defer". If set to "defer" the plugin is allowed to start before making a
## connection. This is useful if the broker may be down when telegraf is
## started, but if there are any typos in the broker setting, they will cause
## connection failures without warning at startup
# connection_strategy = "startup"
## Maximum length of a message to consume, in bytes (default 0/unlimited);
## larger messages are dropped
max_message_len = 1000000
## Max undelivered messages
## This plugin uses tracking metrics, which ensure messages are read to
## outputs before acknowledging them to the original broker to ensure data
## is not lost. This option sets the maximum messages to read from the
## broker that have not been written by an output.
##
## This value needs to be picked with awareness of the agent's
## metric_batch_size value as well. Setting max undelivered messages too high
## can result in a constant stream of data batches to the output. While
## setting it too low may never flush the broker's messages.
# max_undelivered_messages = 1000
## Maximum amount of time the consumer should take to process messages. If
## the debug log prints messages from sarama about 'abandoning subscription
## to [topic] because consuming was taking too long', increase this value to
## longer than the time taken by the output plugin(s).
##
## Note that the effective timeout could be between 'max_processing_time' and
## '2 * max_processing_time'.
# max_processing_time = "100ms"
## The default number of message bytes to fetch from the broker in each
## request (default 1MB). This should be larger than the majority of
## your messages, or else the consumer will spend a lot of time
## negotiating sizes and not actually consuming. Similar to the JVM's
## `fetch.message.max.bytes`.
# consumer_fetch_default = "1MB"
## Data format to consume.
## Each data format has its own unique set of configuration options, read
## more about them here:
## https://github.com/influxdata/telegraf/blob/master/docs/DATA_FORMATS_INPUT.md
data_format = "influx"
OpenSearch
[[outputs.opensearch]]
## URLs
## The full HTTP endpoint URL for your OpenSearch instance. Multiple URLs can
## be specified as part of the same cluster, but only one URLs is used to
## write during each interval.
urls = ["http://node1.os.example.com:9200"]
## Index Name
## Target index name for metrics (OpenSearch will create if it not exists).
## This is a Golang template (see https://pkg.go.dev/text/template)
## You can also specify
## metric name (`{{.Name}}`), tag value (`{{.Tag "tag_name"}}`), field value (`{{.Field "field_name"}}`)
## If the tag does not exist, the default tag value will be empty string "".
## the timestamp (`{{.Time.Format "xxxxxxxxx"}}`).
## For example: "telegraf-{{.Time.Format \"2006-01-02\"}}-{{.Tag \"host\"}}" would set it to telegraf-2023-07-27-HostName
index_name = ""
## Timeout
## OpenSearch client timeout
# timeout = "5s"
## Sniffer
## Set to true to ask OpenSearch a list of all cluster nodes,
## thus it is not necessary to list all nodes in the urls config option
# enable_sniffer = false
## GZIP Compression
## Set to true to enable gzip compression
# enable_gzip = false
## Health Check Interval
## Set the interval to check if the OpenSearch nodes are available
## Setting to "0s" will disable the health check (not recommended in production)
# health_check_interval = "10s"
## Set the timeout for periodic health checks.
# health_check_timeout = "1s"
## HTTP basic authentication details.
# username = ""
# password = ""
## HTTP bearer token authentication details
# auth_bearer_token = ""
## Optional TLS Config
## Set to true/false to enforce TLS being enabled/disabled. If not set,
## enable TLS only if any of the other options are specified.
# tls_enable =
## Trusted root certificates for server
# tls_ca = "/path/to/cafile"
## Used for TLS client certificate authentication
# tls_cert = "/path/to/certfile"
## Used for TLS client certificate authentication
# tls_key = "/path/to/keyfile"
## Send the specified TLS server name via SNI
# tls_server_name = "kubernetes.example.com"
## Use TLS but skip chain & host verification
# insecure_skip_verify = false
## Template Config
## Manage templates
## Set to true if you want telegraf to manage its index template.
## If enabled it will create a recommended index template for telegraf indexes
# manage_template = true
## Template Name
## The template name used for telegraf indexes
# template_name = "telegraf"
## Overwrite Templates
## Set to true if you want telegraf to overwrite an existing template
# overwrite_template = false
## Document ID
## If set to true a unique ID hash will be sent as
## sha256(concat(timestamp,measurement,series-hash)) string. It will enable
## data resend and update metric points avoiding duplicated metrics with
## different id's
# force_document_id = false
## Value Handling
## Specifies the handling of NaN and Inf values.
## This option can have the following values:
## none -- do not modify field-values (default); will produce an error
## if NaNs or infs are encountered
## drop -- drop fields containing NaNs or infs
## replace -- replace with the value in "float_replacement_value" (default: 0.0)
## NaNs and inf will be replaced with the given number, -inf with the negative of that number
# float_handling = "none"
# float_replacement_value = 0.0
## Pipeline Config
## To use a ingest pipeline, set this to the name of the pipeline you want to use.
# use_pipeline = "my_pipeline"
## Pipeline Name
## Additionally, you can specify a tag name using the notation (`{{.Tag "tag_name"}}`)
## which will be used as the pipeline name (e.g. "{{.Tag \"os_pipeline\"}}").
## If the tag does not exist, the default pipeline will be used as the pipeline.
## If no default pipeline is set, no pipeline is used for the metric.
# default_pipeline = ""
Input and output integration examples
Kafka
-
Real-Time Data Processing: Use the Kafka plugin to feed live data from a Kafka topic into a monitoring system. This can be particularly useful for applications that require instant feedback on performance metrics or user activity, allowing businesses to react more swiftly to changing conditions in their environments.
-
Dynamic Metrics Collection: Leverage this plugin to dynamically adjust the metrics being captured based on events occurring within Kafka. For instance, by integrating with other services, users can have the plugin reconfigure itself on-the-fly, ensuring relevant metrics are always collected according to the needs of the business or application.
-
Centralized Logging and Monitoring: Implement a centralized logging system using the Kafka Consumer Plugin to aggregate logs from multiple services into a unified monitoring dashboard. This setup can help identify issues across different services and improve overall system observability and troubleshooting capabilities.
-
Anomaly Detection System: Combine Kafka with machine learning algorithms for real-time anomaly detection. By constantly analyzing streaming data, this setup can automatically identify unusual patterns, triggering alerts and mitigating potential issues more effectively.
OpenSearch
-
Dynamic Indexing for Time-Series Data: Utilize the OpenSearch Telegraf plugin to dynamically create indexes for time-series metrics, ensuring that data is stored in an organized manner conducive to time-based queries. By defining index patterns using Go templates, users can leverage the plugin to create daily or monthly indexes, which can greatly simplify data management and retrieval over time, thus enhancing analytical performance.
-
Centralized Logging for Multi-Tenant Applications: Implement the OpenSearch plugin in a multi-tenant application where each tenant’s logs are sent to separate indexes. This enables targeted analysis and monitoring for each tenant while maintaining data isolation. By utilizing the index name templating feature, users can automatically create tenant-specific indexes, which not only streamlines the process but also enhances security and accessibility for tenant data.
-
Integration with Machine Learning for Anomaly Detection: Leverage the OpenSearch plugin alongside machine learning tools to automatically detect anomalies in metrics data. By configuring the plugin to send real-time metrics to OpenSearch, users can apply machine learning models on the incoming data streams to identify outliers or unusual patterns, facilitating proactive monitoring and swift remedial actions.
-
Enhanced Monitoring Dashboards with OpenSearch: Use the metrics collected from OpenSearch to create real-time dashboards that provide insights into system performance. By feeding metrics into OpenSearch, organizations can utilize OpenSearch Dashboards to visualize key performance indicators, allowing operations teams to quickly assess health and performance, and making data-driven decisions.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration