Jenkins and IoTDB Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider Jenkins and InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

The Jenkins plugin collects vital information regarding jobs and nodes from a Jenkins instance through its API, facilitating comprehensive monitoring and analysis.

This plugin saves Telegraf metrics to an Apache IoTDB backend, supporting session connection and data insertion.

Integration details

Jenkins

The Jenkins Telegraf plugin allows users to gather metrics from a Jenkins instance without needing to install any additional plugins on Jenkins itself. By utilizing the Jenkins API, the plugin retrieves information about nodes and jobs running in the Jenkins environment. This integration provides a comprehensive overview of the Jenkins infrastructure, including real-time metrics that can be used for monitoring and analysis. Key features include configurable filters for job and node selection, optional TLS security settings, and the ability to manage request timeouts and connection limits effectively. This makes it an essential tool for teams that rely on Jenkins for continuous integration and delivery, ensuring they have the insights they need to maintain optimal performance and reliability.

IoTDB

Apache IoTDB (Database for Internet of Things) is an IoT native database with high performance for data management and analysis, deployable on the edge and the cloud. Its light-weight architecture, high performance, and rich feature set create a perfect fit for massive data storage, high-speed data ingestion, and complex analytics in the IoT industrial fields. IoTDB deeply integrates with Apache Hadoop, Spark, and Flink, which further enhances its capabilities in handling large scale data and sophisticated processing tasks.

Configuration

Jenkins

[[inputs.jenkins]]
  ## The Jenkins URL in the format "schema://host:port"
  url = "http://my-jenkins-instance:8080"
  # username = "admin"
  # password = "admin"

  ## Set response_timeout
  response_timeout = "5s"

  ## Optional TLS Config
  # tls_ca = "/etc/telegraf/ca.pem"
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key = "/etc/telegraf/key.pem"
  ## Use SSL but skip chain & host verification
  # insecure_skip_verify = false

  ## Optional Max Job Build Age filter
  ## Default 1 hour, ignore builds older than max_build_age
  # max_build_age = "1h"

  ## Optional Sub Job Depth filter
  ## Jenkins can have unlimited layer of sub jobs
  ## This config will limit the layers of pulling, default value 0 means
  ## unlimited pulling until no more sub jobs
  # max_subjob_depth = 0

  ## Optional Sub Job Per Layer
  ## In workflow-multibranch-plugin, each branch will be created as a sub job.
  ## This config will limit to call only the lasted branches in each layer,
  ## empty will use default value 10
  # max_subjob_per_layer = 10

  ## Jobs to include or exclude from gathering
  ## When using both lists, job_exclude has priority.
  ## Wildcards are supported: [ "jobA/*", "jobB/subjob1/*"]
  # job_include = [ "*" ]
  # job_exclude = [ ]

  ## Nodes to include or exclude from gathering
  ## When using both lists, node_exclude has priority.
  # node_include = [ "*" ]
  # node_exclude = [ ]

  ## Worker pool for jenkins plugin only
  ## Empty this field will use default value 5
  # max_connections = 5

  ## When set to true will add node labels as a comma-separated tag. If none,
  ## are found, then a tag with the value of 'none' is used. Finally, if a
  ## label contains a comma it is replaced with an underscore.
  # node_labels_as_tag = false

IoTDB

[[outputs.iotdb]]
  ## Configuration of IoTDB server connection
  host = "127.0.0.1"
  # port = "6667"

  ## Configuration of authentication
  # user = "root"
  # password = "root"

  ## Timeout to open a new session.
  ## A value of zero means no timeout.
  # timeout = "5s"

  ## Configuration of type conversion for 64-bit unsigned int
  ## IoTDB currently DOES NOT support unsigned integers (version 13.x).
  ## 32-bit unsigned integers are safely converted into 64-bit signed integers by the plugin,
  ## however, this is not true for 64-bit values in general as overflows may occur.
  ## The following setting allows to specify the handling of 64-bit unsigned integers.
  ## Available values are:
  ##   - "int64"       --  convert to 64-bit signed integers and accept overflows
  ##   - "int64_clip"  --  convert to 64-bit signed integers and clip the values on overflow to 9,223,372,036,854,775,807
  ##   - "text"        --  convert to the string representation of the value
  # uint64_conversion = "int64_clip"

  ## Configuration of TimeStamp
  ## TimeStamp is always saved in 64bits int. timestamp_precision specifies the unit of timestamp.
  ## Available value:
  ## "second", "millisecond", "microsecond", "nanosecond"(default)
  # timestamp_precision = "nanosecond"

  ## Handling of tags
  ## Tags are not fully supported by IoTDB.
  ## A guide with suggestions on how to handle tags can be found here:
  ##     https://iotdb.apache.org/UserGuide/Master/API/InfluxDB-Protocol.html
  ##
  ## Available values are:
  ##   - "fields"     --  convert tags to fields in the measurement
  ##   - "device_id"  --  attach tags to the device ID
  ##
  ## For Example, a metric named "root.sg.device" with the tags `tag1: "private"`  and  `tag2: "working"` and
  ##  fields `s1: 100`  and `s2: "hello"` will result in the following representations in IoTDB
  ##   - "fields"     --  root.sg.device, s1=100, s2="hello", tag1="private", tag2="working"
  ##   - "device_id"  --  root.sg.device.private.working, s1=100, s2="hello"
  # convert_tags_to = "device_id"

  ## Handling of unsupported characters
  ## Some characters in different versions of IoTDB are not supported in path name
  ## A guide with suggetions on valid paths can be found here:
  ## for iotdb 0.13.x           -> https://iotdb.apache.org/UserGuide/V0.13.x/Reference/Syntax-Conventions.html#identifiers
  ## for iotdb 1.x.x and above  -> https://iotdb.apache.org/UserGuide/V1.3.x/User-Manual/Syntax-Rule.html#identifier
  ##
  ## Available values are:
  ##   - "1.0", "1.1", "1.2", "1.3"  -- enclose in `` the world having forbidden character 
  ##                                    such as @ $ # : [ ] { } ( ) space
  ##   - "0.13"                      -- enclose in `` the world having forbidden character 
  ##                                    such as space
  ##
  ## Keep this section commented if you don't want to sanitize the path
  # sanitize_tag = "1.3"

Input and output integration examples

Jenkins

  1. Continuous Integration Monitoring: Use the Jenkins plugin to monitor the performance of continuous integration pipelines by collecting metrics on job durations and failure rates. This can help teams identify bottlenecks in the pipeline and improve overall build efficiency.

  2. Resource Allocation Analysis: Leverage Jenkins node metrics to assess resource usage across different agents. By understanding how resources are allocated, teams can optimize their Jenkins architecture, potentially reallocating agents or adjusting job configurations for better performance.

  3. Job Execution Trends: Analyze historical job performance metrics to identify trends in job execution over time. With this data, teams can proactively address potential issues before they grow, making adjustments to the jobs or their configurations as needed.

  4. Alerting for Job Failures: Implement alerts that leverage the Jenkins job metrics to notify team members in case of job failures. This proactive approach can enhance operational awareness and speed up response times to failures, ensuring that critical jobs are monitored effectively.

IoTDB

  1. Real-Time IoT Monitoring: Utilize the IoTDB plugin to gather sensor data from various IoT devices and save it in an Apache IoTDB backend, facilitating real-time monitoring of environmental conditions such as temperature and humidity. This use case enables organizations to analyze trends over time and make informed decisions based on historical data, while also utilizing IoTDB’s efficient storage and querying capabilities.

  2. Smart Agriculture Data Collection: Use the IoTDB plugin to collect metrics from smart agriculture sensors deployed in fields. By transmitting moisture levels, nutrient content, and atmospheric conditions to IoTDB, farmers can access detailed insights into optimal planting and watering schedules, thus improving crop yields and resource management.

  3. Energy Consumption Analytics: Leverage the IoTDB plugin to track energy consumption metrics from smart meters across a utility network. This integration enables analytics to identify peaks in usage and predict future consumption patterns, ultimately supporting energy conservation initiatives and improved utility management.

  4. Automated Industrial Equipment Monitoring: Use this plugin to gather operational metrics from machinery in a manufacturing plant and store them in IoTDB for analysis. This setup can help identify inefficiencies, predictive maintenance needs, and operational anomalies, ensuring optimal performance and minimizing unexpected downtimes.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration