Jenkins and Clickhouse Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider Jenkins and InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

The Jenkins plugin collects vital information regarding jobs and nodes from a Jenkins instance through its API, facilitating comprehensive monitoring and analysis.

Telegraf’s SQL plugin sends collected metrics to an SQL database using a straightforward table schema and dynamic column generation. When configured for ClickHouse, it adjusts DSN formatting and type conversion settings to ensure seamless data integration.

Integration details

Jenkins

The Jenkins Telegraf plugin allows users to gather metrics from a Jenkins instance without needing to install any additional plugins on Jenkins itself. By utilizing the Jenkins API, the plugin retrieves information about nodes and jobs running in the Jenkins environment. This integration provides a comprehensive overview of the Jenkins infrastructure, including real-time metrics that can be used for monitoring and analysis. Key features include configurable filters for job and node selection, optional TLS security settings, and the ability to manage request timeouts and connection limits effectively. This makes it an essential tool for teams that rely on Jenkins for continuous integration and delivery, ensuring they have the insights they need to maintain optimal performance and reliability.

Clickhouse

Telegraf’s SQL plugin is engineered to write metric data into an SQL database by dynamically creating tables and columns based on incoming metrics. When configured for ClickHouse, it utilizes the clickhouse-go v1.5.4 driver, which employs a unique DSN format and a set of specialized type conversion rules to map Telegraf’s data types directly to ClickHouse’s native types. This approach ensures optimal storage and retrieval performance in high-throughput environments, making it well-suited for real-time analytics and large-scale data warehousing. The dynamic schema creation and precise type mapping enable detailed time-series data logging, crucial for monitoring modern, distributed systems.

Configuration

Jenkins

[[inputs.jenkins]]
  ## The Jenkins URL in the format "schema://host:port"
  url = "http://my-jenkins-instance:8080"
  # username = "admin"
  # password = "admin"

  ## Set response_timeout
  response_timeout = "5s"

  ## Optional TLS Config
  # tls_ca = "/etc/telegraf/ca.pem"
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key = "/etc/telegraf/key.pem"
  ## Use SSL but skip chain & host verification
  # insecure_skip_verify = false

  ## Optional Max Job Build Age filter
  ## Default 1 hour, ignore builds older than max_build_age
  # max_build_age = "1h"

  ## Optional Sub Job Depth filter
  ## Jenkins can have unlimited layer of sub jobs
  ## This config will limit the layers of pulling, default value 0 means
  ## unlimited pulling until no more sub jobs
  # max_subjob_depth = 0

  ## Optional Sub Job Per Layer
  ## In workflow-multibranch-plugin, each branch will be created as a sub job.
  ## This config will limit to call only the lasted branches in each layer,
  ## empty will use default value 10
  # max_subjob_per_layer = 10

  ## Jobs to include or exclude from gathering
  ## When using both lists, job_exclude has priority.
  ## Wildcards are supported: [ "jobA/*", "jobB/subjob1/*"]
  # job_include = [ "*" ]
  # job_exclude = [ ]

  ## Nodes to include or exclude from gathering
  ## When using both lists, node_exclude has priority.
  # node_include = [ "*" ]
  # node_exclude = [ ]

  ## Worker pool for jenkins plugin only
  ## Empty this field will use default value 5
  # max_connections = 5

  ## When set to true will add node labels as a comma-separated tag. If none,
  ## are found, then a tag with the value of 'none' is used. Finally, if a
  ## label contains a comma it is replaced with an underscore.
  # node_labels_as_tag = false

Clickhouse

[[outputs.sql]]
  ## Database driver
  ## Valid options include mssql, mysql, pgx, sqlite, snowflake, clickhouse
  driver = "clickhouse"

  ## Data source name
  ## For ClickHouse, the DSN follows the clickhouse-go v1.5.4 format.
  ## Example DSN: "tcp://localhost:9000?debug=true"
  data_source_name = "tcp://localhost:9000?debug=true"

  ## Timestamp column name
  timestamp_column = "timestamp"

  ## Table creation template
  ## Available template variables:
  ##  {TABLE}        - table name as a quoted identifier
  ##  {TABLELITERAL} - table name as a quoted string literal
  ##  {COLUMNS}      - column definitions (list of quoted identifiers and types)
  table_template = "CREATE TABLE {TABLE} ({COLUMNS})"

  ## Table existence check template
  ## Available template variables:
  ##  {TABLE} - table name as a quoted identifier
  table_exists_template = "SELECT 1 FROM {TABLE} LIMIT 1"

  ## Initialization SQL (optional)
  init_sql = ""

  ## Maximum amount of time a connection may be idle. "0s" means connections are never closed due to idle time.
  connection_max_idle_time = "0s"

  ## Maximum amount of time a connection may be reused. "0s" means connections are never closed due to age.
  connection_max_lifetime = "0s"

  ## Maximum number of connections in the idle connection pool. 0 means unlimited.
  connection_max_idle = 2

  ## Maximum number of open connections to the database. 0 means unlimited.
  connection_max_open = 0

  ## Metric type to SQL type conversion for ClickHouse.
  ## The conversion maps Telegraf metric types to ClickHouse native data types.
  [outputs.sql.convert]
    conversion_style = "literal"
    integer          = "Int64"
    text             = "String"
    timestamp        = "DateTime"
    defaultvalue     = "String"
    unsigned         = "UInt64"
    bool             = "UInt8"
    real             = "Float64"

Input and output integration examples

Jenkins

  1. Continuous Integration Monitoring: Use the Jenkins plugin to monitor the performance of continuous integration pipelines by collecting metrics on job durations and failure rates. This can help teams identify bottlenecks in the pipeline and improve overall build efficiency.

  2. Resource Allocation Analysis: Leverage Jenkins node metrics to assess resource usage across different agents. By understanding how resources are allocated, teams can optimize their Jenkins architecture, potentially reallocating agents or adjusting job configurations for better performance.

  3. Job Execution Trends: Analyze historical job performance metrics to identify trends in job execution over time. With this data, teams can proactively address potential issues before they grow, making adjustments to the jobs or their configurations as needed.

  4. Alerting for Job Failures: Implement alerts that leverage the Jenkins job metrics to notify team members in case of job failures. This proactive approach can enhance operational awareness and speed up response times to failures, ensuring that critical jobs are monitored effectively.

Clickhouse

  1. Real-Time Analytics for High-Volume Data: Use the plugin to feed streaming metrics from large-scale systems into ClickHouse. This setup supports ultra-fast query performance and near real-time analytics, ideal for monitoring high-traffic applications.

  2. Time-Series Data Warehousing: Integrate the plugin with ClickHouse to create a robust time-series data warehouse. This use case allows organizations to store detailed historical metrics and perform complex queries for trend analysis and capacity planning.

  3. Scalable Monitoring in Distributed Environments: Leverage the plugin to dynamically create tables per metric type in ClickHouse, making it easier to manage and query data from a multitude of distributed systems without prior schema definitions.

  4. Optimized Storage for IoT Deployments: Deploy the plugin to ingest data from IoT sensors into ClickHouse. Its efficient schema creation and native type mapping facilitate the handling of massive volumes of data, enabling real-time monitoring and predictive maintenance.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration