Jenkins and Google BigQuery Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
The Jenkins plugin collects vital information regarding jobs and nodes from a Jenkins instance through its API, facilitating comprehensive monitoring and analysis.
The Google BigQuery plugin allows Telegraf to write metrics to Google Cloud BigQuery, enabling robust data analytics capabilities for telemetry data.
Integration details
Jenkins
The Jenkins Telegraf plugin allows users to gather metrics from a Jenkins instance without needing to install any additional plugins on Jenkins itself. By utilizing the Jenkins API, the plugin retrieves information about nodes and jobs running in the Jenkins environment. This integration provides a comprehensive overview of the Jenkins infrastructure, including real-time metrics that can be used for monitoring and analysis. Key features include configurable filters for job and node selection, optional TLS security settings, and the ability to manage request timeouts and connection limits effectively. This makes it an essential tool for teams that rely on Jenkins for continuous integration and delivery, ensuring they have the insights they need to maintain optimal performance and reliability.
Google BigQuery
The Google BigQuery plugin for Telegraf enables seamless integration with Google Cloud’s BigQuery service, a popular data warehousing and analytics platform. This plugin facilitates the transfer of metrics collected by Telegraf into BigQuery datasets, making it easier for users to perform analyses and generate insights from their telemetry data. It requires authentication through a service account or user credentials and is designed to handle various data types, ensuring that users can maintain the integrity and accuracy of their metrics as they are stored in BigQuery tables. The configuration options allow for customization around dataset specifications and handling metrics, including the management of hyphens in metric names, which are not supported by BigQuery for streaming inserts. This plugin is particularly useful for organizations leveraging the scalability and powerful query capabilities of BigQuery to analyze large volumes of monitoring data.
Configuration
Jenkins
[[inputs.jenkins]]
## The Jenkins URL in the format "schema://host:port"
url = "http://my-jenkins-instance:8080"
# username = "admin"
# password = "admin"
## Set response_timeout
response_timeout = "5s"
## Optional TLS Config
# tls_ca = "/etc/telegraf/ca.pem"
# tls_cert = "/etc/telegraf/cert.pem"
# tls_key = "/etc/telegraf/key.pem"
## Use SSL but skip chain & host verification
# insecure_skip_verify = false
## Optional Max Job Build Age filter
## Default 1 hour, ignore builds older than max_build_age
# max_build_age = "1h"
## Optional Sub Job Depth filter
## Jenkins can have unlimited layer of sub jobs
## This config will limit the layers of pulling, default value 0 means
## unlimited pulling until no more sub jobs
# max_subjob_depth = 0
## Optional Sub Job Per Layer
## In workflow-multibranch-plugin, each branch will be created as a sub job.
## This config will limit to call only the lasted branches in each layer,
## empty will use default value 10
# max_subjob_per_layer = 10
## Jobs to include or exclude from gathering
## When using both lists, job_exclude has priority.
## Wildcards are supported: [ "jobA/*", "jobB/subjob1/*"]
# job_include = [ "*" ]
# job_exclude = [ ]
## Nodes to include or exclude from gathering
## When using both lists, node_exclude has priority.
# node_include = [ "*" ]
# node_exclude = [ ]
## Worker pool for jenkins plugin only
## Empty this field will use default value 5
# max_connections = 5
## When set to true will add node labels as a comma-separated tag. If none,
## are found, then a tag with the value of 'none' is used. Finally, if a
## label contains a comma it is replaced with an underscore.
# node_labels_as_tag = false
Google BigQuery
# Configuration for Google Cloud BigQuery to send entries
[[outputs.bigquery]]
## Credentials File
credentials_file = "/path/to/service/account/key.json"
## Google Cloud Platform Project
# project = ""
## The namespace for the metric descriptor
dataset = "telegraf"
## Timeout for BigQuery operations.
# timeout = "5s"
## Character to replace hyphens on Metric name
# replace_hyphen_to = "_"
## Write all metrics in a single compact table
# compact_table = ""
Input and output integration examples
Jenkins
-
Continuous Integration Monitoring: Use the Jenkins plugin to monitor the performance of continuous integration pipelines by collecting metrics on job durations and failure rates. This can help teams identify bottlenecks in the pipeline and improve overall build efficiency.
-
Resource Allocation Analysis: Leverage Jenkins node metrics to assess resource usage across different agents. By understanding how resources are allocated, teams can optimize their Jenkins architecture, potentially reallocating agents or adjusting job configurations for better performance.
-
Job Execution Trends: Analyze historical job performance metrics to identify trends in job execution over time. With this data, teams can proactively address potential issues before they grow, making adjustments to the jobs or their configurations as needed.
-
Alerting for Job Failures: Implement alerts that leverage the Jenkins job metrics to notify team members in case of job failures. This proactive approach can enhance operational awareness and speed up response times to failures, ensuring that critical jobs are monitored effectively.
Google BigQuery
-
Real-Time Analytics Dashboard: Leverage the Google BigQuery plugin to feed live metrics into a custom analytics dashboard hosted on Google Cloud. This setup would allow teams to visualize performance data in real-time, providing insights into system health and usage patterns. By using BigQuery’s querying capabilities, users can easily create tailored reports and dashboards to meet their specific needs, thus enhancing decision-making processes.
-
Cost Management and Optimization Analysis: Utilize the plugin to automatically send cost-related metrics from various services into BigQuery. Analyzing this data can help businesses identify unnecessary expenses and optimize resource usage. By performing aggregation and transformation queries in BigQuery, organizations can create accurate forecasts and manage their cloud spending efficiently.
-
Cross-Team Collaboration on Monitoring Data: Enable different teams within an organization to share their monitoring data using BigQuery. With the help of this Telegraf plugin, teams can push their metrics to a central BigQuery instance, fostering collaboration. This data-sharing approach encourages best practices and cross-functional awareness, leading to collective improvements in system performance and reliability.
-
Historical Analysis for Capacity Planning: By using the BigQuery plugin, companies can collect and store historical metrics data essential for capacity planning. Analyzing trends over time can help anticipate system needs and scale infrastructure proactively. Organizations can create time-series analyses and identify patterns that inform their long-term strategic decisions.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration