HTTP and Thanos Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider HTTP and InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

The HTTP plugin allows for the collection of metrics from specified HTTP endpoints, handling various data formats and authentication methods.

This plugin sends metrics from Telegraf to Thanos using the Prometheus remote write protocol over HTTP, allowing efficient and scalable ingestion into Thanos Receive components.

Integration details

HTTP

The HTTP plugin collects metrics from one or more HTTP(S) endpoints, which should have metrics formatted in one of the supported input data formats. It also supports secrets from secret-stores for various authentication options and includes globally supported configuration settings.

Thanos

Telegraf’s HTTP plugin can send metrics directly to Thanos via its Remote Write-compatible Receive component. By setting the data format to prometheusremotewrite, Telegraf can serialize metrics into the same protobuf-based format used by native Prometheus clients. This setup enables high-throughput, low-latency metric ingestion into Thanos, facilitating centralized observability at scale. It is particularly useful in hybrid environments where Telegraf is collecting metrics from systems outside Prometheus’ native reach, such as SNMP devices, Windows hosts, or custom apps, and streams them directly to Thanos for long-term storage and global querying.

Configuration

HTTP

[[inputs.http]]
  ## One or more URLs from which to read formatted metrics.
  urls = [
    "http://localhost/metrics",
    "http+unix:///run/user/420/podman/podman.sock:/d/v4.0.0/libpod/pods/json"
  ]

  ## HTTP method
  # method = "GET"

  ## Optional HTTP headers
  # headers = {"X-Special-Header" = "Special-Value"}

  ## HTTP entity-body to send with POST/PUT requests.
  # body = ""

  ## HTTP Content-Encoding for write request body, can be set to "gzip" to
  ## compress body or "identity" to apply no encoding.
  # content_encoding = "identity"

  ## Optional Bearer token settings to use for the API calls.
  ## Use either the token itself or the token file if you need a token.
  # token = "eyJhbGc...Qssw5c"
  # token_file = "/path/to/file"

  ## Optional HTTP Basic Auth Credentials
  # username = "username"
  # password = "pa$$word"

  ## OAuth2 Client Credentials. The options 'client_id', 'client_secret', and 'token_url' are required to use OAuth2.
  # client_id = "clientid"
  # client_secret = "secret"
  # token_url = "https://indentityprovider/oauth2/v1/token"
  # scopes = ["urn:opc:idm:__myscopes__"]

  ## HTTP Proxy support
  # use_system_proxy = false
  # http_proxy_url = ""

  ## Optional TLS Config
  ## Set to true/false to enforce TLS being enabled/disabled. If not set,
  ## enable TLS only if any of the other options are specified.
  # tls_enable =
  ## Trusted root certificates for server
  # tls_ca = "/path/to/cafile"
  ## Used for TLS client certificate authentication
  # tls_cert = "/path/to/certfile"
  ## Used for TLS client certificate authentication
  # tls_key = "/path/to/keyfile"
  ## Password for the key file if it is encrypted
  # tls_key_pwd = ""
  ## Send the specified TLS server name via SNI
  # tls_server_name = "kubernetes.example.com"
  ## Minimal TLS version to accept by the client
  # tls_min_version = "TLS12"
  ## List of ciphers to accept, by default all secure ciphers will be accepted
  ## See https://pkg.go.dev/crypto/tls#pkg-constants for supported values.
  ## Use "all", "secure" and "insecure" to add all support ciphers, secure
  ## suites or insecure suites respectively.
  # tls_cipher_suites = ["secure"]
  ## Renegotiation method, "never", "once" or "freely"
  # tls_renegotiation_method = "never"
  ## Use TLS but skip chain & host verification
  # insecure_skip_verify = false

  ## Optional Cookie authentication
  # cookie_auth_url = "https://localhost/authMe"
  # cookie_auth_method = "POST"
  # cookie_auth_username = "username"
  # cookie_auth_password = "pa$$word"
  # cookie_auth_headers = { Content-Type = "application/json", X-MY-HEADER = "hello" }
  # cookie_auth_body = '{"username": "user", "password": "pa$$word", "authenticate": "me"}'
  ## cookie_auth_renewal not set or set to "0" will auth once and never renew the cookie
  # cookie_auth_renewal = "5m"

  ## Amount of time allowed to complete the HTTP request
  # timeout = "5s"

  ## List of success status codes
  # success_status_codes = [200]

  ## Data format to consume.
  ## Each data format has its own unique set of configuration options, read
  ## more about them here:
  ## https://github.com/influxdata/telegraf/blob/master/docs/DATA_FORMATS_INPUT.md
  # data_format = "influx"

Thanos

[[outputs.http]]
  ## Thanos Receive endpoint for remote write
  url = "http://thanos-receive.example.com/api/v1/receive"

  ## HTTP method
  method = "POST"

  ## Data format set to Prometheus remote write
  data_format = "prometheusremotewrite"

  ## Optional headers (authorization, etc.)
  # [outputs.http.headers]
  #   Authorization = "Bearer YOUR_TOKEN"

  ## Optional TLS configuration
  # tls_ca = "/path/to/ca.pem"
  # tls_cert = "/path/to/cert.pem"
  # tls_key = "/path/to/key.pem"
  # insecure_skip_verify = false

  ## Request timeout
  timeout = "10s"

Input and output integration examples

HTTP

  1. Collecting Metrics from Localhost: The plugin can fetch metrics from an HTTP endpoint like http://localhost/metrics, allowing for easy local monitoring.
  2. Using Unix Domain Sockets: You can specify metrics collection from services over Unix domain sockets by using the http+unix scheme, for example, http+unix:///path/to/service.sock:/api/endpoint.

Thanos

  1. Agentless Cloud Monitoring: Deploy Telegraf agents across cloud VMs to collect system and application metrics, then stream them directly into Thanos using Remote Write. This provides centralized observability without requiring Prometheus nodes at each location.

  2. Scalable Windows Host Monitoring: Use Telegraf on Windows machines to collect OS-level metrics and send them via Remote Write to Thanos Receive. This enables observability across heterogeneous environments with native Prometheus support only on Linux.

  3. Cross-Region Metrics Federation: Telegraf agents in multiple geographic regions can push data to region-local Thanos Receivers using this plugin. From there, Thanos can deduplicate and query metrics globally, reducing latency and network egress costs.

  4. Integrating Third-Party Data into Thanos: Collect metrics from custom telemetry sources such as REST APIs or proprietary logs using Telegraf inputs and forward them to Thanos via Remote Write. This brings non-native data into a Prometheus-compatible, long-term analytics pipeline.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration