HTTP and Redis Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
The HTTP plugin allows for the collection of metrics from specified HTTP endpoints, handling various data formats and authentication methods.
The Redis Time Series output plugin is designed to publish metrics to a Redis efficiently.
Integration details
HTTP
The HTTP plugin collects metrics from one or more HTTP(S) endpoints, which should have metrics formatted in one of the supported input data formats. It also supports secrets from secret-stores for various authentication options and includes globally supported configuration settings.
Redis
The Redis output plugin writes metrics to the Redis server.
Configuration
HTTP
[[inputs.http]]
## One or more URLs from which to read formatted metrics.
urls = [
"http://localhost/metrics",
"http+unix:///run/user/420/podman/podman.sock:/d/v4.0.0/libpod/pods/json"
]
## HTTP method
# method = "GET"
## Optional HTTP headers
# headers = {"X-Special-Header" = "Special-Value"}
## HTTP entity-body to send with POST/PUT requests.
# body = ""
## HTTP Content-Encoding for write request body, can be set to "gzip" to
## compress body or "identity" to apply no encoding.
# content_encoding = "identity"
## Optional Bearer token settings to use for the API calls.
## Use either the token itself or the token file if you need a token.
# token = "eyJhbGc...Qssw5c"
# token_file = "/path/to/file"
## Optional HTTP Basic Auth Credentials
# username = "username"
# password = "pa$$word"
## OAuth2 Client Credentials. The options 'client_id', 'client_secret', and 'token_url' are required to use OAuth2.
# client_id = "clientid"
# client_secret = "secret"
# token_url = "https://indentityprovider/oauth2/v1/token"
# scopes = ["urn:opc:idm:__myscopes__"]
## HTTP Proxy support
# use_system_proxy = false
# http_proxy_url = ""
## Optional TLS Config
## Set to true/false to enforce TLS being enabled/disabled. If not set,
## enable TLS only if any of the other options are specified.
# tls_enable =
## Trusted root certificates for server
# tls_ca = "/path/to/cafile"
## Used for TLS client certificate authentication
# tls_cert = "/path/to/certfile"
## Used for TLS client certificate authentication
# tls_key = "/path/to/keyfile"
## Password for the key file if it is encrypted
# tls_key_pwd = ""
## Send the specified TLS server name via SNI
# tls_server_name = "kubernetes.example.com"
## Minimal TLS version to accept by the client
# tls_min_version = "TLS12"
## List of ciphers to accept, by default all secure ciphers will be accepted
## See https://pkg.go.dev/crypto/tls#pkg-constants for supported values.
## Use "all", "secure" and "insecure" to add all support ciphers, secure
## suites or insecure suites respectively.
# tls_cipher_suites = ["secure"]
## Renegotiation method, "never", "once" or "freely"
# tls_renegotiation_method = "never"
## Use TLS but skip chain & host verification
# insecure_skip_verify = false
## Optional Cookie authentication
# cookie_auth_url = "https://localhost/authMe"
# cookie_auth_method = "POST"
# cookie_auth_username = "username"
# cookie_auth_password = "pa$$word"
# cookie_auth_headers = { Content-Type = "application/json", X-MY-HEADER = "hello" }
# cookie_auth_body = '{"username": "user", "password": "pa$$word", "authenticate": "me"}'
## cookie_auth_renewal not set or set to "0" will auth once and never renew the cookie
# cookie_auth_renewal = "5m"
## Amount of time allowed to complete the HTTP request
# timeout = "5s"
## List of success status codes
# success_status_codes = [200]
## Data format to consume.
## Each data format has its own unique set of configuration options, read
## more about them here:
## https://github.com/influxdata/telegraf/blob/master/docs/DATA_FORMATS_INPUT.md
# data_format = "influx"
Redis
[[outputs.redistimeseries]]
## The address of the RedisTimeSeries server.
address = "127.0.0.1:6379"
## Redis ACL credentials
# username = ""
# password = ""
# database = 0
## Timeout for operations such as ping or sending metrics
# timeout = "10s"
## Enable attempt to convert string fields to numeric values
## If "false" or in case the string value cannot be converted the string
## field will be dropped.
# convert_string_fields = true
## Optional TLS Config
# tls_ca = "/etc/telegraf/ca.pem"
# tls_cert = "/etc/telegraf/cert.pem"
# tls_key = "/etc/telegraf/key.pem"
# insecure_skip_verify = false
Input and output integration examples
HTTP
- Collecting Metrics from Localhost: The plugin can fetch metrics from an HTTP endpoint like
http://localhost/metrics
, allowing for easy local monitoring. - Using Unix Domain Sockets: You can specify metrics collection from services over Unix domain sockets by using the http+unix scheme, for example,
http+unix:///path/to/service.sock:/api/endpoint
.
Redis
- Metrics Storage: Utilize the Redis output plugin to store time-series metrics collected from various sources directly into a Redis database for quick retrieval and analysis.
- Dynamic Configuration: Adjust the
address
and other settings dynamically to publish metrics to different Redis instances based on the deployment environment. - String Field Conversion: Leverage the
convert_string_fields
option to automatically convert string metrics to numeric formats, ensuring that data is stored in the desired type for analytics.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration