HTTP and Microsoft SQL Server Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider HTTP and InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

The HTTP plugin allows for the collection of metrics from specified HTTP endpoints, handling various data formats and authentication methods.

Telegraf’s SQL plugin facilitates the storage of metrics in SQL databases. When configured for Microsoft SQL Server, it supports the specific DSN format and schema requirements, allowing for seamless integration with SQL Server.

Integration details

HTTP

The HTTP plugin collects metrics from one or more HTTP(S) endpoints, which should have metrics formatted in one of the supported input data formats. It also supports secrets from secret-stores for various authentication options and includes globally supported configuration settings.

Microsoft SQL Server

Telegraf’s SQL output plugin for Microsoft SQL Server is designed to capture and store metric data by dynamically creating tables and columns that match the structure of incoming data. This integration leverages the go-mssqldb driver, which follows the SQL Server connection protocol through a DSN that includes server, port, and database details. Although the driver is considered experimental due to limited unit tests, it provides robust support for dynamic schema generation and data insertion, enabling detailed time-stamped records of system performance. This flexibility makes it a valuable tool for environments that demand reliable and granular metric logging, despite its experimental status.

Configuration

HTTP

[[inputs.http]]
  ## One or more URLs from which to read formatted metrics.
  urls = [
    "http://localhost/metrics",
    "http+unix:///run/user/420/podman/podman.sock:/d/v4.0.0/libpod/pods/json"
  ]

  ## HTTP method
  # method = "GET"

  ## Optional HTTP headers
  # headers = {"X-Special-Header" = "Special-Value"}

  ## HTTP entity-body to send with POST/PUT requests.
  # body = ""

  ## HTTP Content-Encoding for write request body, can be set to "gzip" to
  ## compress body or "identity" to apply no encoding.
  # content_encoding = "identity"

  ## Optional Bearer token settings to use for the API calls.
  ## Use either the token itself or the token file if you need a token.
  # token = "eyJhbGc...Qssw5c"
  # token_file = "/path/to/file"

  ## Optional HTTP Basic Auth Credentials
  # username = "username"
  # password = "pa$$word"

  ## OAuth2 Client Credentials. The options 'client_id', 'client_secret', and 'token_url' are required to use OAuth2.
  # client_id = "clientid"
  # client_secret = "secret"
  # token_url = "https://indentityprovider/oauth2/v1/token"
  # scopes = ["urn:opc:idm:__myscopes__"]

  ## HTTP Proxy support
  # use_system_proxy = false
  # http_proxy_url = ""

  ## Optional TLS Config
  ## Set to true/false to enforce TLS being enabled/disabled. If not set,
  ## enable TLS only if any of the other options are specified.
  # tls_enable =
  ## Trusted root certificates for server
  # tls_ca = "/path/to/cafile"
  ## Used for TLS client certificate authentication
  # tls_cert = "/path/to/certfile"
  ## Used for TLS client certificate authentication
  # tls_key = "/path/to/keyfile"
  ## Password for the key file if it is encrypted
  # tls_key_pwd = ""
  ## Send the specified TLS server name via SNI
  # tls_server_name = "kubernetes.example.com"
  ## Minimal TLS version to accept by the client
  # tls_min_version = "TLS12"
  ## List of ciphers to accept, by default all secure ciphers will be accepted
  ## See https://pkg.go.dev/crypto/tls#pkg-constants for supported values.
  ## Use "all", "secure" and "insecure" to add all support ciphers, secure
  ## suites or insecure suites respectively.
  # tls_cipher_suites = ["secure"]
  ## Renegotiation method, "never", "once" or "freely"
  # tls_renegotiation_method = "never"
  ## Use TLS but skip chain & host verification
  # insecure_skip_verify = false

  ## Optional Cookie authentication
  # cookie_auth_url = "https://localhost/authMe"
  # cookie_auth_method = "POST"
  # cookie_auth_username = "username"
  # cookie_auth_password = "pa$$word"
  # cookie_auth_headers = { Content-Type = "application/json", X-MY-HEADER = "hello" }
  # cookie_auth_body = '{"username": "user", "password": "pa$$word", "authenticate": "me"}'
  ## cookie_auth_renewal not set or set to "0" will auth once and never renew the cookie
  # cookie_auth_renewal = "5m"

  ## Amount of time allowed to complete the HTTP request
  # timeout = "5s"

  ## List of success status codes
  # success_status_codes = [200]

  ## Data format to consume.
  ## Each data format has its own unique set of configuration options, read
  ## more about them here:
  ## https://github.com/influxdata/telegraf/blob/master/docs/DATA_FORMATS_INPUT.md
  # data_format = "influx"

Microsoft SQL Server

[[outputs.sql]]
  ## Database driver
  ## Valid options: mssql (Microsoft SQL Server), mysql (MySQL), pgx (Postgres),
  ## sqlite (SQLite3), snowflake (snowflake.com), clickhouse (ClickHouse)
  driver = "mssql"

  ## Data source name
  ## For Microsoft SQL Server, the DSN typically includes the server, port, username, password, and database name.
  ## Example DSN: "sqlserver://username:password@localhost:1433?database=telegraf"
  data_source_name = "sqlserver://username:password@localhost:1433?database=telegraf"

  ## Timestamp column name
  timestamp_column = "timestamp"

  ## Table creation template
  ## Available template variables:
  ##  {TABLE}        - table name as a quoted identifier
  ##  {TABLELITERAL} - table name as a quoted string literal
  ##  {COLUMNS}      - column definitions (list of quoted identifiers and types)
  table_template = "CREATE TABLE {TABLE} ({COLUMNS})"

  ## Table existence check template
  ## Available template variables:
  ##  {TABLE} - table name as a quoted identifier
  table_exists_template = "SELECT 1 FROM {TABLE} LIMIT 1"

  ## Initialization SQL (optional)
  init_sql = ""

  ## Maximum amount of time a connection may be idle. "0s" means connections are never closed due to idle time.
  connection_max_idle_time = "0s"

  ## Maximum amount of time a connection may be reused. "0s" means connections are never closed due to age.
  connection_max_lifetime = "0s"

  ## Maximum number of connections in the idle connection pool. 0 means unlimited.
  connection_max_idle = 2

  ## Maximum number of open connections to the database. 0 means unlimited.
  connection_max_open = 0

  ## Metric type to SQL type conversion
  ## You can customize the mapping if needed.
  #[outputs.sql.convert]
  #  integer       = "INT"
  #  real          = "DOUBLE"
  #  text          = "TEXT"
  #  timestamp     = "TIMESTAMP"
  #  defaultvalue  = "TEXT"
  #  unsigned      = "UNSIGNED"
  #  bool          = "BOOL"

Input and output integration examples

HTTP

  1. Collecting Metrics from Localhost: The plugin can fetch metrics from an HTTP endpoint like http://localhost/metrics, allowing for easy local monitoring.
  2. Using Unix Domain Sockets: You can specify metrics collection from services over Unix domain sockets by using the http+unix scheme, for example, http+unix:///path/to/service.sock:/api/endpoint.

Microsoft SQL Server

  1. Enterprise Application Monitoring: Leverage the plugin to capture detailed performance metrics from enterprise applications running on SQL Server. This setup allows IT teams to analyze system performance, track transaction times, and identify bottlenecks across complex, multi-tier environments.

  2. Dynamic Infrastructure Auditing: Deploy the plugin to create a dynamic audit log of infrastructure changes and performance metrics in SQL Server. This use case is ideal for organizations that require real-time monitoring and historical analysis of system performance for compliance and optimization.

  3. Automated Performance Benchmarking: Use the plugin to continuously record and analyze performance metrics of SQL Server databases. This enables automated benchmarking, where historical data is compared against current performance, helping to quickly identify anomalies or degradation in service.

  4. Integrated DevOps Dashboards: Integrate the plugin with DevOps monitoring tools to feed real-time metrics from SQL Server into centralized dashboards. This provides a holistic view of application health, allowing teams to correlate SQL Server performance with application-level events for faster troubleshooting and proactive maintenance.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration