HAProxy and Microsoft SQL Server Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
This plugin gathers and reports statistics from HAProxy, a popular open-source load balancer and proxy server, to help in monitoring and optimizing its performance.
Telegraf’s SQL plugin facilitates the storage of metrics in SQL databases. When configured for Microsoft SQL Server, it supports the specific DSN format and schema requirements, allowing for seamless integration with SQL Server.
Integration details
HAProxy
The HAProxy plugin for Telegraf enables users to gather statistics directly from a HAProxy server via its stats socket or HTTP statistics page. HAProxy is a widely employed software load balancer and proxy server that provides high availability and performance for TCP and HTTP applications. By integrating with HAProxy, this plugin allows users to monitor and analyze various performance metrics such as active server counts, request rates, response codes, and session statuses in real-time, facilitating better decision-making and proactive management of network resources. Key features include support for both HTTP and socket-based metrics collection, compatibility with basic authentication for secure access, and configurable options for metric field naming, allowing for customization tailored to user preferences.
Microsoft SQL Server
Telegraf’s SQL output plugin for Microsoft SQL Server is designed to capture and store metric data by dynamically creating tables and columns that match the structure of incoming data. This integration leverages the go-mssqldb driver, which follows the SQL Server connection protocol through a DSN that includes server, port, and database details. Although the driver is considered experimental due to limited unit tests, it provides robust support for dynamic schema generation and data insertion, enabling detailed time-stamped records of system performance. This flexibility makes it a valuable tool for environments that demand reliable and granular metric logging, despite its experimental status.
Configuration
HAProxy
[[inputs.haproxy]]
## List of stats endpoints. Metrics can be collected from both http and socket
## endpoints. Examples of valid endpoints:
## - http://myhaproxy.com:1936/haproxy?stats
## - https://myhaproxy.com:8000/stats
## - socket:/run/haproxy/admin.sock
## - /run/haproxy/*.sock
## - tcp://127.0.0.1:1936
##
## Server addresses not starting with 'http://', 'https://', 'tcp://' will be
## treated as possible sockets. When specifying local socket, glob patterns are
## supported.
servers = ["http://myhaproxy.com:1936/haproxy?stats"]
## By default, some of the fields are renamed from what haproxy calls them.
## Setting this option to true results in the plugin keeping the original
## field names.
# keep_field_names = false
## Optional TLS Config
# tls_ca = "/etc/telegraf/ca.pem"
# tls_cert = "/etc/telegraf/cert.pem"
# tls_key = "/etc/telegraf/key.pem"
## Use TLS but skip chain & host verification
# insecure_skip_verify = false
Microsoft SQL Server
[[outputs.sql]]
## Database driver
## Valid options: mssql (Microsoft SQL Server), mysql (MySQL), pgx (Postgres),
## sqlite (SQLite3), snowflake (snowflake.com), clickhouse (ClickHouse)
driver = "mssql"
## Data source name
## For Microsoft SQL Server, the DSN typically includes the server, port, username, password, and database name.
## Example DSN: "sqlserver://username:password@localhost:1433?database=telegraf"
data_source_name = "sqlserver://username:password@localhost:1433?database=telegraf"
## Timestamp column name
timestamp_column = "timestamp"
## Table creation template
## Available template variables:
## {TABLE} - table name as a quoted identifier
## {TABLELITERAL} - table name as a quoted string literal
## {COLUMNS} - column definitions (list of quoted identifiers and types)
table_template = "CREATE TABLE {TABLE} ({COLUMNS})"
## Table existence check template
## Available template variables:
## {TABLE} - table name as a quoted identifier
table_exists_template = "SELECT 1 FROM {TABLE} LIMIT 1"
## Initialization SQL (optional)
init_sql = ""
## Maximum amount of time a connection may be idle. "0s" means connections are never closed due to idle time.
connection_max_idle_time = "0s"
## Maximum amount of time a connection may be reused. "0s" means connections are never closed due to age.
connection_max_lifetime = "0s"
## Maximum number of connections in the idle connection pool. 0 means unlimited.
connection_max_idle = 2
## Maximum number of open connections to the database. 0 means unlimited.
connection_max_open = 0
## Metric type to SQL type conversion
## You can customize the mapping if needed.
#[outputs.sql.convert]
# integer = "INT"
# real = "DOUBLE"
# text = "TEXT"
# timestamp = "TIMESTAMP"
# defaultvalue = "TEXT"
# unsigned = "UNSIGNED"
# bool = "BOOL"
Input and output integration examples
HAProxy
-
Dynamic Load Adjustment: Utilize the HAProxy plugin to monitor traffic patterns in real time, enabling automated adjustments to load balancing algorithms. By continuously gathering metrics on server loads and request rates, system administrators can dynamically allocate resources, ensuring that no single server becomes a bottleneck, thus enhancing overall application performance and availability.
-
Historical Performance Analytics: Integrate this plugin with a time series database to collect HAProxy metrics over time, allowing you to analyze historical performance and traffic trends. This can facilitate predictive analysis and planning for capacity, giving businesses insights into peak traffic times and helping to identify potential future resource needs.
-
Alerting on Anomalies: Implement alerting workflows that trigger when unusual patterns are detected in HAProxy metrics, such as sudden spikes in error rates or drops in request handling capacity. By leveraging this plugin, operations teams can receive timely notifications, allowing for swift intervention and minimizing the impact of potential downtime on end-users.
Microsoft SQL Server
-
Enterprise Application Monitoring: Leverage the plugin to capture detailed performance metrics from enterprise applications running on SQL Server. This setup allows IT teams to analyze system performance, track transaction times, and identify bottlenecks across complex, multi-tier environments.
-
Dynamic Infrastructure Auditing: Deploy the plugin to create a dynamic audit log of infrastructure changes and performance metrics in SQL Server. This use case is ideal for organizations that require real-time monitoring and historical analysis of system performance for compliance and optimization.
-
Automated Performance Benchmarking: Use the plugin to continuously record and analyze performance metrics of SQL Server databases. This enables automated benchmarking, where historical data is compared against current performance, helping to quickly identify anomalies or degradation in service.
-
Integrated DevOps Dashboards: Integrate the plugin with DevOps monitoring tools to feed real-time metrics from SQL Server into centralized dashboards. This provides a holistic view of application health, allowing teams to correlate SQL Server performance with application-level events for faster troubleshooting and proactive maintenance.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration