Google Cloud Storage and SQLite Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider Google Cloud Storage and InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

The Google Cloud Storage plugin collects metrics from specified Google Cloud Storage buckets, providing insight into storage usage and performance.

Telegraf’s SQL output plugin stores metrics in an SQL database by creating tables dynamically for each metric type. When configured for SQLite, it utilizes a file-based DSN and a minimal SQL schema tailored for lightweight, embedded database usage.

Integration details

Google Cloud Storage

The Google Cloud Storage Telegraf plugin enables the collection of metrics from specified Google Cloud Storage buckets. As organizations increasingly rely on cloud storage solutions for their data management, the ability to monitor the performance and utilization of these resources becomes essential. This plugin is particularly useful for tracking how storage is used, understanding data patterns, and ensuring operational efficiency. By integrating with Google Cloud Storage APIs, it allows users to gather insights from their cloud environments, feeding metrics directly into monitoring systems for further analysis. The plugin supports various configuration options, enabling users to customize the data collection process based on their specific needs.

SQLite

The SQL output plugin writes Telegraf metrics to an SQL database using a dynamic schema where each metric type corresponds to a table. For SQLite, the plugin uses the modernc.org/sqlite driver and requires a DSN in the format of a file URI (e.g., ‘file:/path/to/telegraf.db?cache=shared’). This configuration leverages standard ANSI SQL for table creation and data insertion, ensuring compatibility with SQLite’s capabilities.

Configuration

Google Cloud Storage

[[inputs.google_cloud_storage]]
  bucket = "my-bucket"
  # key_prefix = "my-bucket"
  offset_key = "offset_key"
  objects_per_iteration = 10
  data_format = "influx"
  # credentials_file = "path/to/my/creds.json"

SQLite

[[outputs.sql]]
  ## Database driver
  ## Valid options: mssql (Microsoft SQL Server), mysql (MySQL), pgx (Postgres),
  ## sqlite (SQLite3), snowflake (snowflake.com), clickhouse (ClickHouse)
  driver = "sqlite"

  ## Data source name
  ## For SQLite, the DSN is a filename or URL with the scheme "file:".
  ## Example: "file:/path/to/telegraf.db?cache=shared"
  data_source_name = "file:/path/to/telegraf.db?cache=shared"

  ## Timestamp column name
  timestamp_column = "timestamp"

  ## Table creation template
  ## Available template variables:
  ##  {TABLE}        - table name as a quoted identifier
  ##  {TABLELITERAL} - table name as a quoted string literal
  ##  {COLUMNS}      - column definitions (list of quoted identifiers and types)
  table_template = "CREATE TABLE {TABLE} ({COLUMNS})"

  ## Table existence check template
  ## Available template variables:
  ##  {TABLE} - table name as a quoted identifier
  table_exists_template = "SELECT 1 FROM {TABLE} LIMIT 1"

  ## Initialization SQL (optional)
  init_sql = ""

  ## Maximum amount of time a connection may be idle. "0s" means connections are never closed due to idle time.
  connection_max_idle_time = "0s"

  ## Maximum amount of time a connection may be reused. "0s" means connections are never closed due to age.
  connection_max_lifetime = "0s"

  ## Maximum number of connections in the idle connection pool. 0 means unlimited.
  connection_max_idle = 2

  ## Maximum number of open connections to the database. 0 means unlimited.
  connection_max_open = 0

  ## Metric type to SQL type conversion
  ## The values on the left are the data types Telegraf has and the values on the right are the SQL types used when writing to SQLite.
  #[outputs.sql.convert]
  #  integer       = "INT"
  #  real          = "DOUBLE"
  #  text          = "TEXT"
  #  timestamp     = "TIMESTAMP"
  #  defaultvalue  = "TEXT"
  #  unsigned      = "UNSIGNED"
  #  bool          = "BOOL"

Input and output integration examples

Google Cloud Storage

  1. Automated Backup Monitoring: Utilize the Google Cloud Storage plugin to regularly monitor the status of backup files stored in a Cloud Storage bucket. By configuring the plugin to track file metrics, organizations can automate alerts if backup sizes deviate from expected patterns, ensuring that data protection processes are functioning properly and any anomalies are promptly addressed.

  2. Cost Optimization Insights: Integrate this plugin into a cost management tool to analyze the usage patterns of Cloud Storage. By collecting metrics on file sizes and access frequencies, teams can optimize their storage solutions and make informed decisions about data retention policies, potentially reducing unnecessary storage costs and improving resource allocation.

  3. Compliance and Auditing: Use the plugin to generate metrics that aid in compliance verification for data stored in Google Cloud Storage. By providing detailed insights into data access and storage usage, organizations can ensure adherence to regulatory requirements, helping in audits and aligning with best practices for data governance.

  4. Performance Benchmarking: Deploy the plugin to benchmark the performance of data retrieval and storage operations in Google Cloud Storage. By analyzing metrics over time, teams can identify performance bottlenecks or inefficiencies, allowing them to optimize their applications and infrastructure that depend on cloud storage services.

SQLite

  1. Local Monitoring Storage: Configure the plugin to write metrics to a local SQLite database file. This is ideal for lightweight deployments where setting up a full-scale database server is not required.
  2. Embedded Applications: Use SQLite as the backend for applications embedded in edge devices, benefiting from its file-based architecture and minimal resource requirements.
  3. Quick Setup for Testing: Leverage SQLite’s ease of use to quickly set up a testing environment for Telegraf metrics collection without the need for external database services.
  4. Custom Schema Management: Adjust the table creation templates to predefine your schema if you require specific column types or indexes, ensuring compatibility with your application’s needs.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration