Google Cloud PubSub and OpenTSDB Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
This plugin ingests metrics from Google Cloud PubSub, allowing for real-time data processing and integration into monitoring setups.
The OpenTSDB plugin facilitates the integration of Telegraf with OpenTSDB, allowing users to push time-series metrics to an OpenTSDB backend seamlessly.
Integration details
Google Cloud PubSub
The Google Cloud PubSub input plugin is designed to ingest metrics from Google Cloud PubSub, a messaging service that facilitates real-time communication between different systems. It allows users to create and process metrics by pulling messages from a specified subscription in a Google Cloud Project. One of the critical features of this plugin is its ability to operate as a service input, actively listening for incoming messages rather than merely polling for metrics at set intervals. Through various configuration options, users can customize the behavior of message ingestion, such as handling credentials, managing message sizes, and tuning the acknowledgment settings to ensure that messages are only acknowledged after successful processing. By leveraging the strengths of Google PubSub, this plugin integrates seamlessly with cloud-native architectures, enabling users to build robust and scalable applications that can react to events in real-time.
OpenTSDB
The OpenTSDB plugin is designed to send metrics to an OpenTSDB instance using either the telnet or HTTP mode. With the introduction of OpenTSDB 2.0, the recommended method for sending metrics is via the HTTP API, which allows for batch processing of metrics by configuring the ‘http_batch_size’. The plugin supports several configuration options including metrics prefixing, server host and port specification, URI path customization for reverse proxies, and debug options for diagnosing communication issues with OpenTSDB. This plugin is particularly useful in scenarios where time series data is generated and needs to be efficiently stored in a scalable time series database like OpenTSDB, making it suitable for a wide range of monitoring and analytics applications.
Configuration
Google Cloud PubSub
[[inputs.cloud_pubsub]]
project = "my-project"
subscription = "my-subscription"
data_format = "influx"
# credentials_file = "path/to/my/creds.json"
# retry_delay_seconds = 5
# max_message_len = 1000000
# max_undelivered_messages = 1000
# max_extension = 0
# max_outstanding_messages = 0
# max_outstanding_bytes = 0
# max_receiver_go_routines = 0
# base64_data = false
# content_encoding = "identity"
# max_decompression_size = "500MB"
OpenTSDB
[[outputs.opentsdb]]
## prefix for metrics keys
prefix = "my.specific.prefix."
## DNS name of the OpenTSDB server
## Using "opentsdb.example.com" or "tcp://opentsdb.example.com" will use the
## telnet API. "http://opentsdb.example.com" will use the Http API.
host = "opentsdb.example.com"
## Port of the OpenTSDB server
port = 4242
## Number of data points to send to OpenTSDB in Http requests.
## Not used with telnet API.
http_batch_size = 50
## URI Path for Http requests to OpenTSDB.
## Used in cases where OpenTSDB is located behind a reverse proxy.
http_path = "/api/put"
## Debug true - Prints OpenTSDB communication
debug = false
## Separator separates measurement name from field
separator = "_"
Input and output integration examples
Google Cloud PubSub
-
Real-Time Analytics for IoT Devices: Utilize the Google Cloud PubSub plugin to aggregate metrics from IoT devices scattered across various locations. By streaming data from devices to Google PubSub and using this plugin to ingest metrics, organizations can create a centralized dashboard for real-time monitoring and alerting. This setup allows for immediate insights into device performance, facilitating proactive maintenance and operational efficiency.
-
Dynamic Log Processing and Monitoring: Ingest logs from numerous sources via Google Cloud PubSub into a Telegraf pipeline, utilizing the plugin to parse and analyze log messages. This can help teams quickly identify anomalies or patterns in logs and streamline the process of troubleshooting issues across distributed systems. By consolidating log data, organizations can enhance their observability and response capabilities.
-
Event-Driven Workflow Integrations: Use the Google Cloud PubSub plugin to connect various cloud functions or services. Each time a new message is pushed to a subscription, actions can be triggered in other parts of the cloud architecture, such as starting data processing jobs, notifications, or even updates to reports. This event-driven approach allows for a more reactive system architecture that can adapt to changing business needs.
OpenTSDB
-
Real-time Infrastructure Monitoring: Utilize the OpenTSDB plugin to collect and store metrics from various infrastructure components. By configuring the plugin to push metrics to OpenTSDB, organizations can have a centralized view of their infrastructure health and performance over time.
-
Custom Application Metrics Tracking: Integrate the OpenTSDB plugin into custom applications to track key performance indicators (KPIs) such as response times, error rates, and user interactions. This setup allows developers and product teams to visualize application performance trends and make data-driven decisions.
-
Automated Anomaly Detection: Leverage the plugin in conjunction with machine learning algorithms to automatically detect anomalies in time-series data sent to OpenTSDB. By continuously monitoring the incoming metrics, the system can train models that alert users to potential issues before they affect application performance.
-
Historical Data Analysis: Use the OpenTSDB plugin to store and analyze historical performance data for capacity planning and trend analysis. This provides valuable insights into system behavior over time, helping teams to understand usage patterns and prepare for future growth.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration