Google Cloud PubSub and Azure Data Explorer Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider Google Cloud PubSub and InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

This plugin ingests metrics from Google Cloud PubSub, allowing for real-time data processing and integration into monitoring setups.

The Azure Data Explorer plugin allows integration of metrics collection with Azure Data Explorer, enabling users to analyze and query their telemetry data efficiently. With this plugin, users can configure ingestion settings to suit their needs and leverage Azure’s powerful analytical capabilities.

Integration details

Google Cloud PubSub

The Google Cloud PubSub input plugin is designed to ingest metrics from Google Cloud PubSub, a messaging service that facilitates real-time communication between different systems. It allows users to create and process metrics by pulling messages from a specified subscription in a Google Cloud Project. One of the critical features of this plugin is its ability to operate as a service input, actively listening for incoming messages rather than merely polling for metrics at set intervals. Through various configuration options, users can customize the behavior of message ingestion, such as handling credentials, managing message sizes, and tuning the acknowledgment settings to ensure that messages are only acknowledged after successful processing. By leveraging the strengths of Google PubSub, this plugin integrates seamlessly with cloud-native architectures, enabling users to build robust and scalable applications that can react to events in real-time.

Azure Data Explorer

The Azure Data Explorer plugin allows users to write metrics, logs, and time series data collected from various Telegraf input plugins into Azure Data Explorer, Azure Synapse, and Real-Time Analytics in Fabric. This integration serves as a bridge, allowing applications and services to monitor their performance metrics or logs efficiently. Azure Data Explorer is optimized for analytics over large volumes of diverse data types, making it an excellent choice for real-time analytics and monitoring solutions in cloud environments. The plugin empowers users to configure metrics ingestion based on their requirements, define table schemas dynamically, and set various ingestion methods while retaining flexibility regarding roles and permissions needed for database operations. This supports scalable and secure monitoring setups for modern applications that utilize cloud services.

Configuration

Google Cloud PubSub

[[inputs.cloud_pubsub]]
  project = "my-project"
  subscription = "my-subscription"
  data_format = "influx"
  # credentials_file = "path/to/my/creds.json"
  # retry_delay_seconds = 5
  # max_message_len = 1000000
  # max_undelivered_messages = 1000
  # max_extension = 0
  # max_outstanding_messages = 0
  # max_outstanding_bytes = 0
  # max_receiver_go_routines = 0
  # base64_data = false
  # content_encoding = "identity"
  # max_decompression_size = "500MB"

Azure Data Explorer

[[outputs.azure_data_explorer]]
  ## The URI property of the Azure Data Explorer resource on Azure
  ## ex: endpoint_url = https://myadxresource.australiasoutheast.kusto.windows.net
  endpoint_url = ""

  ## The Azure Data Explorer database that the metrics will be ingested into.
  ## The plugin will NOT generate this database automatically, it's expected that this database already exists before ingestion.
  ## ex: "exampledatabase"
  database = ""

  ## Timeout for Azure Data Explorer operations
  # timeout = "20s"

  ## Type of metrics grouping used when pushing to Azure Data Explorer.
  ## Default is "TablePerMetric" for one table per different metric.
  ## For more information, please check the plugin README.
  # metrics_grouping_type = "TablePerMetric"

  ## Name of the single table to store all the metrics (Only needed if metrics_grouping_type is "SingleTable").
  # table_name = ""

  ## Creates tables and relevant mapping if set to true(default).
  ## Skips table and mapping creation if set to false, this is useful for running Telegraf with the lowest possible permissions i.e. table ingestor role.
  # create_tables = true

  ##  Ingestion method to use.
  ##  Available options are
  ##    - managed  --  streaming ingestion with fallback to batched ingestion or the "queued" method below
  ##    - queued   --  queue up metrics data and process sequentially
  # ingestion_type = "queued"

Input and output integration examples

Google Cloud PubSub

  1. Real-Time Analytics for IoT Devices: Utilize the Google Cloud PubSub plugin to aggregate metrics from IoT devices scattered across various locations. By streaming data from devices to Google PubSub and using this plugin to ingest metrics, organizations can create a centralized dashboard for real-time monitoring and alerting. This setup allows for immediate insights into device performance, facilitating proactive maintenance and operational efficiency.

  2. Dynamic Log Processing and Monitoring: Ingest logs from numerous sources via Google Cloud PubSub into a Telegraf pipeline, utilizing the plugin to parse and analyze log messages. This can help teams quickly identify anomalies or patterns in logs and streamline the process of troubleshooting issues across distributed systems. By consolidating log data, organizations can enhance their observability and response capabilities.

  3. Event-Driven Workflow Integrations: Use the Google Cloud PubSub plugin to connect various cloud functions or services. Each time a new message is pushed to a subscription, actions can be triggered in other parts of the cloud architecture, such as starting data processing jobs, notifications, or even updates to reports. This event-driven approach allows for a more reactive system architecture that can adapt to changing business needs.

Azure Data Explorer

  1. Real-Time Monitoring Dashboard: By integrating metrics from various services into Azure Data Explorer using this plugin, organizations can build comprehensive dashboards that reflect real-time performance metrics. This allows teams to respond proactively to performance issues and optimize system health without delay.

  2. Centralized Log Management: Utilize Azure Data Explorer to consolidate logs from multiple applications and services. By utilizing the plugin, organizations can streamline their log analysis processes, making it easier to search, filter, and derive insights from historical data accumulated over time.

  3. Data-Driven Alerting Systems: Enhance monitoring capabilities by configuring alerts based on metrics sent via this plugin. Organizations can set thresholds and automate incident responses, significantly reducing downtime and improving the reliability of critical operations.

  4. Machine Learning Model Training: By leveraging the data sent to Azure Data Explorer, organizations can perform large-scale analytics and prepare the data for feeding into machine learning models. This plugin enables the structuring of data that can subsequently be used for predictive analytics, leading to enhanced decision-making capabilities.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration