gNMI and IoTDB Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
The gNMI (gRPC Network Management Interface) Input Plugin collects telemetry data from network devices using the gNMI Subscribe method. It supports TLS for secure authentication and data transmission.
This plugin saves Telegraf metrics to an Apache IoTDB backend, supporting session connection and data insertion.
Integration details
gNMI
This input plugin is vendor-agnostic and can be used with any platform that supports the gNMI specification. It consumes telemetry data based on the gNMI Subscribe method, allowing for real-time monitoring of network devices.
IoTDB
Apache IoTDB (Database for Internet of Things) is an IoT native database with high performance for data management and analysis, deployable on the edge and the cloud. Its light-weight architecture, high performance, and rich feature set create a perfect fit for massive data storage, high-speed data ingestion, and complex analytics in the IoT industrial fields. IoTDB deeply integrates with Apache Hadoop, Spark, and Flink, which further enhances its capabilities in handling large scale data and sophisticated processing tasks.
Configuration
gNMI
[[inputs.gnmi]]
## Address and port of the gNMI GRPC server
addresses = ["10.49.234.114:57777"]
## define credentials
username = "cisco"
password = "cisco"
## gNMI encoding requested (one of: "proto", "json", "json_ietf", "bytes")
# encoding = "proto"
## redial in case of failures after
# redial = "10s"
## gRPC Keepalive settings
## See https://pkg.go.dev/google.golang.org/grpc/keepalive
## The client will ping the server to see if the transport is still alive if it has
## not see any activity for the given time.
## If not set, none of the keep-alive setting (including those below) will be applied.
## If set and set below 10 seconds, the gRPC library will apply a minimum value of 10s will be used instead.
# keepalive_time = ""
## Timeout for seeing any activity after the keep-alive probe was
## sent. If no activity is seen the connection is closed.
# keepalive_timeout = ""
## gRPC Maximum Message Size
# max_msg_size = "4MB"
## Enable to get the canonical path as field-name
# canonical_field_names = false
## Remove leading slashes and dots in field-name
# trim_field_names = false
## Guess the path-tag if an update does not contain a prefix-path
## Supported values are
## none -- do not add a 'path' tag
## common path -- use the common path elements of all fields in an update
## subscription -- use the subscription path
# path_guessing_strategy = "none"
## Prefix tags from path keys with the path element
# prefix_tag_key_with_path = false
## Optional client-side TLS to authenticate the device
## Set to true/false to enforce TLS being enabled/disabled. If not set,
## enable TLS only if any of the other options are specified.
# tls_enable =
## Trusted root certificates for server
# tls_ca = "/path/to/cafile"
## Used for TLS client certificate authentication
# tls_cert = "/path/to/certfile"
## Used for TLS client certificate authentication
# tls_key = "/path/to/keyfile"
## Password for the key file if it is encrypted
# tls_key_pwd = ""
## Send the specified TLS server name via SNI
# tls_server_name = "kubernetes.example.com"
## Minimal TLS version to accept by the client
# tls_min_version = "TLS12"
## List of ciphers to accept, by default all secure ciphers will be accepted
## See https://pkg.go.dev/crypto/tls#pkg-constants for supported values.
## Use "all", "secure" and "insecure" to add all support ciphers, secure
## suites or insecure suites respectively.
# tls_cipher_suites = ["secure"]
## Renegotiation method, "never", "once" or "freely"
# tls_renegotiation_method = "never"
## Use TLS but skip chain & host verification
# insecure_skip_verify = false
## gNMI subscription prefix (optional, can usually be left empty)
## See: https://github.com/openconfig/reference/blob/master/rpc/gnmi/gnmi-specification.md#222-paths
# origin = ""
# prefix = ""
# target = ""
## Vendor specific options
## This defines what vendor specific options to load.
## * Juniper Header Extension (juniper_header): some sensors are directly managed by
## Linecard, which adds the Juniper GNMI Header Extension. Enabling this
## allows the decoding of the Extension header if present. Currently this knob
## adds component, component_id & sub_component_id as additional tags
# vendor_specific = []
## YANG model paths for decoding IETF JSON payloads
## Model files are loaded recursively from the given directories. Disabled if
## no models are specified.
# yang_model_paths = []
## Define additional aliases to map encoding paths to measurement names
# [inputs.gnmi.aliases]
# ifcounters = "openconfig:/interfaces/interface/state/counters"
[[inputs.gnmi.subscription]]
## Name of the measurement that will be emitted
name = "ifcounters"
## Origin and path of the subscription
## See: https://github.com/openconfig/reference/blob/master/rpc/gnmi/gnmi-specification.md#222-paths
##
## origin usually refers to a (YANG) data model implemented by the device
## and path to a specific substructure inside it that should be subscribed
## to (similar to an XPath). YANG models can be found e.g. here:
## https://github.com/YangModels/yang/tree/master/vendor/cisco/xr
origin = "openconfig-interfaces"
path = "/interfaces/interface/state/counters"
## Subscription mode ("target_defined", "sample", "on_change") and interval
subscription_mode = "sample"
sample_interval = "10s"
## Suppress redundant transmissions when measured values are unchanged
# suppress_redundant = false
## If suppression is enabled, send updates at least every X seconds anyway
# heartbeat_interval = "60s"
IoTDB
[[outputs.iotdb]]
## Configuration of IoTDB server connection
host = "127.0.0.1"
# port = "6667"
## Configuration of authentication
# user = "root"
# password = "root"
## Timeout to open a new session.
## A value of zero means no timeout.
# timeout = "5s"
## Configuration of type conversion for 64-bit unsigned int
## IoTDB currently DOES NOT support unsigned integers (version 13.x).
## 32-bit unsigned integers are safely converted into 64-bit signed integers by the plugin,
## however, this is not true for 64-bit values in general as overflows may occur.
## The following setting allows to specify the handling of 64-bit unsigned integers.
## Available values are:
## - "int64" -- convert to 64-bit signed integers and accept overflows
## - "int64_clip" -- convert to 64-bit signed integers and clip the values on overflow to 9,223,372,036,854,775,807
## - "text" -- convert to the string representation of the value
# uint64_conversion = "int64_clip"
## Configuration of TimeStamp
## TimeStamp is always saved in 64bits int. timestamp_precision specifies the unit of timestamp.
## Available value:
## "second", "millisecond", "microsecond", "nanosecond"(default)
# timestamp_precision = "nanosecond"
## Handling of tags
## Tags are not fully supported by IoTDB.
## A guide with suggestions on how to handle tags can be found here:
## https://iotdb.apache.org/UserGuide/Master/API/InfluxDB-Protocol.html
##
## Available values are:
## - "fields" -- convert tags to fields in the measurement
## - "device_id" -- attach tags to the device ID
##
## For Example, a metric named "root.sg.device" with the tags `tag1: "private"` and `tag2: "working"` and
## fields `s1: 100` and `s2: "hello"` will result in the following representations in IoTDB
## - "fields" -- root.sg.device, s1=100, s2="hello", tag1="private", tag2="working"
## - "device_id" -- root.sg.device.private.working, s1=100, s2="hello"
# convert_tags_to = "device_id"
## Handling of unsupported characters
## Some characters in different versions of IoTDB are not supported in path name
## A guide with suggetions on valid paths can be found here:
## for iotdb 0.13.x -> https://iotdb.apache.org/UserGuide/V0.13.x/Reference/Syntax-Conventions.html#identifiers
## for iotdb 1.x.x and above -> https://iotdb.apache.org/UserGuide/V1.3.x/User-Manual/Syntax-Rule.html#identifier
##
## Available values are:
## - "1.0", "1.1", "1.2", "1.3" -- enclose in `` the world having forbidden character
## such as @ $ # : [ ] { } ( ) space
## - "0.13" -- enclose in `` the world having forbidden character
## such as space
##
## Keep this section commented if you don't want to sanitize the path
# sanitize_tag = "1.3"
Input and output integration examples
gNMI
-
Monitoring Cisco Devices: Use the gNMI plugin to collect telemetry data from Cisco IOS XR, NX-OS, or IOS XE devices for performance monitoring.
-
Real-time Network Insights: With the gNMI plugin, network administrators can gain insights into real-time metrics such as interface statistics and CPU usage.
-
Secure Data Collection: Configure the gNMI plugin with TLS settings to ensure secure communication while collecting sensitive telemetry data from devices.
-
Flexible Data Handling: Use the subscription options to customize which telemetry data you want to collect based on specific needs or requirements.
-
Error Handling: The plugin includes troubleshooting options to handle common issues like missing metric names or TLS handshake failures.
IoTDB
-
Real-Time IoT Monitoring: Utilize the IoTDB plugin to gather sensor data from various IoT devices and save it in an Apache IoTDB backend, facilitating real-time monitoring of environmental conditions such as temperature and humidity. This use case enables organizations to analyze trends over time and make informed decisions based on historical data, while also utilizing IoTDB’s efficient storage and querying capabilities.
-
Smart Agriculture Data Collection: Use the IoTDB plugin to collect metrics from smart agriculture sensors deployed in fields. By transmitting moisture levels, nutrient content, and atmospheric conditions to IoTDB, farmers can access detailed insights into optimal planting and watering schedules, thus improving crop yields and resource management.
-
Energy Consumption Analytics: Leverage the IoTDB plugin to track energy consumption metrics from smart meters across a utility network. This integration enables analytics to identify peaks in usage and predict future consumption patterns, ultimately supporting energy conservation initiatives and improved utility management.
-
Automated Industrial Equipment Monitoring: Use this plugin to gather operational metrics from machinery in a manufacturing plant and store them in IoTDB for analysis. This setup can help identify inefficiencies, predictive maintenance needs, and operational anomalies, ensuring optimal performance and minimizing unexpected downtimes.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration