gNMI and Elasticsearch Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider gNMI and InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

The gNMI (gRPC Network Management Interface) Input Plugin collects telemetry data from network devices using the gNMI Subscribe method. It supports TLS for secure authentication and data transmission.

The Telegraf Elasticsearch Plugin seamlessly sends metrics to an Elasticsearch server. The plugin handles template creation and dynamic index management, and supports various Elasticsearch-specific features to ensure data is formatted correctly for storage and retrieval.

Integration details

gNMI

This input plugin is vendor-agnostic and can be used with any platform that supports the gNMI specification. It consumes telemetry data based on the gNMI Subscribe method, allowing for real-time monitoring of network devices.

Elasticsearch

This plugin writes metrics to Elasticsearch, a distributed, RESTful search and analytics engine capable of storing large amounts of data in near real-time. It is designed to handle Elasticsearch versions 5.x through 7.x and utilizes its dynamic template features to manage data type mapping properly. The plugin supports advanced features such as template management, dynamic index naming, and integration with OpenSearch. It also allows configurations for authentication and health monitoring of the Elasticsearch nodes.

Configuration

gNMI


[[inputs.gnmi]]
  ## Address and port of the gNMI GRPC server
  addresses = ["10.49.234.114:57777"]

  ## define credentials
  username = "cisco"
  password = "cisco"

  ## gNMI encoding requested (one of: "proto", "json", "json_ietf", "bytes")
  # encoding = "proto"

  ## redial in case of failures after
  # redial = "10s"

  ## gRPC Keepalive settings
  ## See https://pkg.go.dev/google.golang.org/grpc/keepalive
  ## The client will ping the server to see if the transport is still alive if it has
  ## not see any activity for the given time.
  ## If not set, none of the keep-alive setting (including those below) will be applied.
  ## If set and set below 10 seconds, the gRPC library will apply a minimum value of 10s will be used instead.
  # keepalive_time = ""

  ## Timeout for seeing any activity after the keep-alive probe was
  ## sent. If no activity is seen the connection is closed.
  # keepalive_timeout = ""

  ## gRPC Maximum Message Size
  # max_msg_size = "4MB"

  ## Enable to get the canonical path as field-name
  # canonical_field_names = false

  ## Remove leading slashes and dots in field-name
  # trim_field_names = false

  ## Guess the path-tag if an update does not contain a prefix-path
  ## Supported values are
  ##   none         -- do not add a 'path' tag
  ##   common path  -- use the common path elements of all fields in an update
  ##   subscription -- use the subscription path
  # path_guessing_strategy = "none"

  ## Prefix tags from path keys with the path element
  # prefix_tag_key_with_path = false

  ## Optional client-side TLS to authenticate the device
  ## Set to true/false to enforce TLS being enabled/disabled. If not set,
  ## enable TLS only if any of the other options are specified.
  # tls_enable =
  ## Trusted root certificates for server
  # tls_ca = "/path/to/cafile"
  ## Used for TLS client certificate authentication
  # tls_cert = "/path/to/certfile"
  ## Used for TLS client certificate authentication
  # tls_key = "/path/to/keyfile"
  ## Password for the key file if it is encrypted
  # tls_key_pwd = ""
  ## Send the specified TLS server name via SNI
  # tls_server_name = "kubernetes.example.com"
  ## Minimal TLS version to accept by the client
  # tls_min_version = "TLS12"
  ## List of ciphers to accept, by default all secure ciphers will be accepted
  ## See https://pkg.go.dev/crypto/tls#pkg-constants for supported values.
  ## Use "all", "secure" and "insecure" to add all support ciphers, secure
  ## suites or insecure suites respectively.
  # tls_cipher_suites = ["secure"]
  ## Renegotiation method, "never", "once" or "freely"
  # tls_renegotiation_method = "never"
  ## Use TLS but skip chain & host verification
  # insecure_skip_verify = false

  ## gNMI subscription prefix (optional, can usually be left empty)
  ## See: https://github.com/openconfig/reference/blob/master/rpc/gnmi/gnmi-specification.md#222-paths
  # origin = ""
  # prefix = ""
  # target = ""

  ## Vendor specific options
  ## This defines what vendor specific options to load.
  ## * Juniper Header Extension (juniper_header): some sensors are directly managed by
  ##   Linecard, which adds the Juniper GNMI Header Extension. Enabling this
  ##   allows the decoding of the Extension header if present. Currently this knob
  ##   adds component, component_id & sub_component_id as additional tags
  # vendor_specific = []

  ## YANG model paths for decoding IETF JSON payloads
  ## Model files are loaded recursively from the given directories. Disabled if
  ## no models are specified.
  # yang_model_paths = []

  ## Define additional aliases to map encoding paths to measurement names
  # [inputs.gnmi.aliases]
  #   ifcounters = "openconfig:/interfaces/interface/state/counters"

  [[inputs.gnmi.subscription]]
    ## Name of the measurement that will be emitted
    name = "ifcounters"

    ## Origin and path of the subscription
    ## See: https://github.com/openconfig/reference/blob/master/rpc/gnmi/gnmi-specification.md#222-paths
    ##
    ## origin usually refers to a (YANG) data model implemented by the device
    ## and path to a specific substructure inside it that should be subscribed
    ## to (similar to an XPath). YANG models can be found e.g. here:
    ## https://github.com/YangModels/yang/tree/master/vendor/cisco/xr
    origin = "openconfig-interfaces"
    path = "/interfaces/interface/state/counters"

    ## Subscription mode ("target_defined", "sample", "on_change") and interval
    subscription_mode = "sample"
    sample_interval = "10s"

    ## Suppress redundant transmissions when measured values are unchanged
    # suppress_redundant = false

    ## If suppression is enabled, send updates at least every X seconds anyway
    # heartbeat_interval = "60s"

Elasticsearch


[[outputs.elasticsearch]]
  ## The full HTTP endpoint URL for your Elasticsearch instance
  ## Multiple urls can be specified as part of the same cluster,
  ## this means that only ONE of the urls will be written to each interval
  urls = [ "http://node1.es.example.com:9200" ] # required.
  ## Elasticsearch client timeout, defaults to "5s" if not set.
  timeout = "5s"
  ## Set to true to ask Elasticsearch a list of all cluster nodes,
  ## thus it is not necessary to list all nodes in the urls config option
  enable_sniffer = false
  ## Set to true to enable gzip compression
  enable_gzip = false
  ## Set the interval to check if the Elasticsearch nodes are available
  ## Setting to "0s" will disable the health check (not recommended in production)
  health_check_interval = "10s"
  ## Set the timeout for periodic health checks.
  # health_check_timeout = "1s"
  ## HTTP basic authentication details.
  ## HTTP basic authentication details
  # username = "telegraf"
  # password = "mypassword"
  ## HTTP bearer token authentication details
  # auth_bearer_token = "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9"

  ## Index Config
  ## The target index for metrics (Elasticsearch will create if it not exists).
  ## You can use the date specifiers below to create indexes per time frame.
  ## The metric timestamp will be used to decide the destination index name
  # %Y - year (2016)
  # %y - last two digits of year (00..99)
  # %m - month (01..12)
  # %d - day of month (e.g., 01)
  # %H - hour (00..23)
  # %V - week of the year (ISO week) (01..53)
  ## Additionally, you can specify a tag name using the notation {{tag_name}}
  ## which will be used as part of the index name. If the tag does not exist,
  ## the default tag value will be used.
  # index_name = "telegraf-{{host}}-%Y.%m.%d"
  # default_tag_value = "none"
  index_name = "telegraf-%Y.%m.%d" # required.

  ## Optional Index Config
  ## Set to true if Telegraf should use the "create" OpType while indexing
  # use_optype_create = false

  ## Optional TLS Config
  # tls_ca = "/etc/telegraf/ca.pem"
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key = "/etc/telegraf/key.pem"
  ## Use TLS but skip chain & host verification
  # insecure_skip_verify = false

  ## Template Config
  ## Set to true if you want telegraf to manage its index template.
  ## If enabled it will create a recommended index template for telegraf indexes
  manage_template = true
  ## The template name used for telegraf indexes
  template_name = "telegraf"
  ## Set to true if you want telegraf to overwrite an existing template
  overwrite_template = false
  ## If set to true a unique ID hash will be sent as sha256(concat(timestamp,measurement,series-hash)) string
  ## it will enable data resend and update metric points avoiding duplicated metrics with different id's
  force_document_id = false

  ## Specifies the handling of NaN and Inf values.
  ## This option can have the following values:
  ##    none    -- do not modify field-values (default); will produce an error if NaNs or infs are encountered
  ##    drop    -- drop fields containing NaNs or infs
  ##    replace -- replace with the value in "float_replacement_value" (default: 0.0)
  ##               NaNs and inf will be replaced with the given number, -inf with the negative of that number
  # float_handling = "none"
  # float_replacement_value = 0.0

  ## Pipeline Config
  ## To use a ingest pipeline, set this to the name of the pipeline you want to use.
  # use_pipeline = "my_pipeline"
  ## Additionally, you can specify a tag name using the notation {{tag_name}}
  ## which will be used as part of the pipeline name. If the tag does not exist,
  ## the default pipeline will be used as the pipeline. If no default pipeline is set,
  ## no pipeline is used for the metric.
  # use_pipeline = "{{es_pipeline}}"
  # default_pipeline = "my_pipeline"
  #
  # Custom HTTP headers
  # To pass custom HTTP headers please define it in a given below section
  # [outputs.elasticsearch.headers]
  #    "X-Custom-Header" = "custom-value"

  ## Template Index Settings
  ## Overrides the template settings.index section with any provided options.
  ## Defaults provided here in the config
  # template_index_settings = {
  #   refresh_interval = "10s",
  #   mapping.total_fields.limit = 5000,
  #   auto_expand_replicas = "0-1",
  #   codec = "best_compression"
  # }

Input and output integration examples

gNMI

  1. Monitoring Cisco Devices: Use the gNMI plugin to collect telemetry data from Cisco IOS XR, NX-OS, or IOS XE devices for performance monitoring.

  2. Real-time Network Insights: With the gNMI plugin, network administrators can gain insights into real-time metrics such as interface statistics and CPU usage.

  3. Secure Data Collection: Configure the gNMI plugin with TLS settings to ensure secure communication while collecting sensitive telemetry data from devices.

  4. Flexible Data Handling: Use the subscription options to customize which telemetry data you want to collect based on specific needs or requirements.

  5. Error Handling: The plugin includes troubleshooting options to handle common issues like missing metric names or TLS handshake failures.

Elasticsearch

  1. Time-based Indexing: Use this plugin to store metrics in Elasticsearch to index each metric based on the time collected. For example, CPU metrics can be stored in a daily index named <code telegraf-2023.01.01, allowing easy time-based queries and retention policies.

  2. Dynamic Templates Management: Utilize the template management feature to automatically create a custom template tailored to your metrics. This allows you to define how different fields are indexed and analyzed without manually configuring Elasticsearch, ensuring an optimal data structure for querying.

  3. OpenSearch Compatibility: If you are using AWS OpenSearch, you can configure this plugin to work seamlessly by activating compatibility mode, ensuring your existing Elasticsearch clients remain functional and compatible with newer cluster setups.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration