gNMI and Azure Data Explorer Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider gNMI and InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

The gNMI (gRPC Network Management Interface) Input Plugin collects telemetry data from network devices using the gNMI Subscribe method. It supports TLS for secure authentication and data transmission.

The Azure Data Explorer plugin allows integration of metrics collection with Azure Data Explorer, enabling users to analyze and query their telemetry data efficiently. With this plugin, users can configure ingestion settings to suit their needs and leverage Azure’s powerful analytical capabilities.

Integration details

gNMI

This input plugin is vendor-agnostic and can be used with any platform that supports the gNMI specification. It consumes telemetry data based on the gNMI Subscribe method, allowing for real-time monitoring of network devices.

Azure Data Explorer

The Azure Data Explorer plugin allows users to write metrics, logs, and time series data collected from various Telegraf input plugins into Azure Data Explorer, Azure Synapse, and Real-Time Analytics in Fabric. This integration serves as a bridge, allowing applications and services to monitor their performance metrics or logs efficiently. Azure Data Explorer is optimized for analytics over large volumes of diverse data types, making it an excellent choice for real-time analytics and monitoring solutions in cloud environments. The plugin empowers users to configure metrics ingestion based on their requirements, define table schemas dynamically, and set various ingestion methods while retaining flexibility regarding roles and permissions needed for database operations. This supports scalable and secure monitoring setups for modern applications that utilize cloud services.

Configuration

gNMI


[[inputs.gnmi]]
  ## Address and port of the gNMI GRPC server
  addresses = ["10.49.234.114:57777"]

  ## define credentials
  username = "cisco"
  password = "cisco"

  ## gNMI encoding requested (one of: "proto", "json", "json_ietf", "bytes")
  # encoding = "proto"

  ## redial in case of failures after
  # redial = "10s"

  ## gRPC Keepalive settings
  ## See https://pkg.go.dev/google.golang.org/grpc/keepalive
  ## The client will ping the server to see if the transport is still alive if it has
  ## not see any activity for the given time.
  ## If not set, none of the keep-alive setting (including those below) will be applied.
  ## If set and set below 10 seconds, the gRPC library will apply a minimum value of 10s will be used instead.
  # keepalive_time = ""

  ## Timeout for seeing any activity after the keep-alive probe was
  ## sent. If no activity is seen the connection is closed.
  # keepalive_timeout = ""

  ## gRPC Maximum Message Size
  # max_msg_size = "4MB"

  ## Enable to get the canonical path as field-name
  # canonical_field_names = false

  ## Remove leading slashes and dots in field-name
  # trim_field_names = false

  ## Guess the path-tag if an update does not contain a prefix-path
  ## Supported values are
  ##   none         -- do not add a 'path' tag
  ##   common path  -- use the common path elements of all fields in an update
  ##   subscription -- use the subscription path
  # path_guessing_strategy = "none"

  ## Prefix tags from path keys with the path element
  # prefix_tag_key_with_path = false

  ## Optional client-side TLS to authenticate the device
  ## Set to true/false to enforce TLS being enabled/disabled. If not set,
  ## enable TLS only if any of the other options are specified.
  # tls_enable =
  ## Trusted root certificates for server
  # tls_ca = "/path/to/cafile"
  ## Used for TLS client certificate authentication
  # tls_cert = "/path/to/certfile"
  ## Used for TLS client certificate authentication
  # tls_key = "/path/to/keyfile"
  ## Password for the key file if it is encrypted
  # tls_key_pwd = ""
  ## Send the specified TLS server name via SNI
  # tls_server_name = "kubernetes.example.com"
  ## Minimal TLS version to accept by the client
  # tls_min_version = "TLS12"
  ## List of ciphers to accept, by default all secure ciphers will be accepted
  ## See https://pkg.go.dev/crypto/tls#pkg-constants for supported values.
  ## Use "all", "secure" and "insecure" to add all support ciphers, secure
  ## suites or insecure suites respectively.
  # tls_cipher_suites = ["secure"]
  ## Renegotiation method, "never", "once" or "freely"
  # tls_renegotiation_method = "never"
  ## Use TLS but skip chain & host verification
  # insecure_skip_verify = false

  ## gNMI subscription prefix (optional, can usually be left empty)
  ## See: https://github.com/openconfig/reference/blob/master/rpc/gnmi/gnmi-specification.md#222-paths
  # origin = ""
  # prefix = ""
  # target = ""

  ## Vendor specific options
  ## This defines what vendor specific options to load.
  ## * Juniper Header Extension (juniper_header): some sensors are directly managed by
  ##   Linecard, which adds the Juniper GNMI Header Extension. Enabling this
  ##   allows the decoding of the Extension header if present. Currently this knob
  ##   adds component, component_id & sub_component_id as additional tags
  # vendor_specific = []

  ## YANG model paths for decoding IETF JSON payloads
  ## Model files are loaded recursively from the given directories. Disabled if
  ## no models are specified.
  # yang_model_paths = []

  ## Define additional aliases to map encoding paths to measurement names
  # [inputs.gnmi.aliases]
  #   ifcounters = "openconfig:/interfaces/interface/state/counters"

  [[inputs.gnmi.subscription]]
    ## Name of the measurement that will be emitted
    name = "ifcounters"

    ## Origin and path of the subscription
    ## See: https://github.com/openconfig/reference/blob/master/rpc/gnmi/gnmi-specification.md#222-paths
    ##
    ## origin usually refers to a (YANG) data model implemented by the device
    ## and path to a specific substructure inside it that should be subscribed
    ## to (similar to an XPath). YANG models can be found e.g. here:
    ## https://github.com/YangModels/yang/tree/master/vendor/cisco/xr
    origin = "openconfig-interfaces"
    path = "/interfaces/interface/state/counters"

    ## Subscription mode ("target_defined", "sample", "on_change") and interval
    subscription_mode = "sample"
    sample_interval = "10s"

    ## Suppress redundant transmissions when measured values are unchanged
    # suppress_redundant = false

    ## If suppression is enabled, send updates at least every X seconds anyway
    # heartbeat_interval = "60s"

Azure Data Explorer

[[outputs.azure_data_explorer]]
  ## The URI property of the Azure Data Explorer resource on Azure
  ## ex: endpoint_url = https://myadxresource.australiasoutheast.kusto.windows.net
  endpoint_url = ""

  ## The Azure Data Explorer database that the metrics will be ingested into.
  ## The plugin will NOT generate this database automatically, it's expected that this database already exists before ingestion.
  ## ex: "exampledatabase"
  database = ""

  ## Timeout for Azure Data Explorer operations
  # timeout = "20s"

  ## Type of metrics grouping used when pushing to Azure Data Explorer.
  ## Default is "TablePerMetric" for one table per different metric.
  ## For more information, please check the plugin README.
  # metrics_grouping_type = "TablePerMetric"

  ## Name of the single table to store all the metrics (Only needed if metrics_grouping_type is "SingleTable").
  # table_name = ""

  ## Creates tables and relevant mapping if set to true(default).
  ## Skips table and mapping creation if set to false, this is useful for running Telegraf with the lowest possible permissions i.e. table ingestor role.
  # create_tables = true

  ##  Ingestion method to use.
  ##  Available options are
  ##    - managed  --  streaming ingestion with fallback to batched ingestion or the "queued" method below
  ##    - queued   --  queue up metrics data and process sequentially
  # ingestion_type = "queued"

Input and output integration examples

gNMI

  1. Monitoring Cisco Devices: Use the gNMI plugin to collect telemetry data from Cisco IOS XR, NX-OS, or IOS XE devices for performance monitoring.

  2. Real-time Network Insights: With the gNMI plugin, network administrators can gain insights into real-time metrics such as interface statistics and CPU usage.

  3. Secure Data Collection: Configure the gNMI plugin with TLS settings to ensure secure communication while collecting sensitive telemetry data from devices.

  4. Flexible Data Handling: Use the subscription options to customize which telemetry data you want to collect based on specific needs or requirements.

  5. Error Handling: The plugin includes troubleshooting options to handle common issues like missing metric names or TLS handshake failures.

Azure Data Explorer

  1. Real-Time Monitoring Dashboard: By integrating metrics from various services into Azure Data Explorer using this plugin, organizations can build comprehensive dashboards that reflect real-time performance metrics. This allows teams to respond proactively to performance issues and optimize system health without delay.

  2. Centralized Log Management: Utilize Azure Data Explorer to consolidate logs from multiple applications and services. By utilizing the plugin, organizations can streamline their log analysis processes, making it easier to search, filter, and derive insights from historical data accumulated over time.

  3. Data-Driven Alerting Systems: Enhance monitoring capabilities by configuring alerts based on metrics sent via this plugin. Organizations can set thresholds and automate incident responses, significantly reducing downtime and improving the reliability of critical operations.

  4. Machine Learning Model Training: By leveraging the data sent to Azure Data Explorer, organizations can perform large-scale analytics and prepare the data for feeding into machine learning models. This plugin enables the structuring of data that can subsequently be used for predictive analytics, leading to enhanced decision-making capabilities.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration