Fluentd and Splunk Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
The Fluentd Input Plugin gathers metrics from Fluentd’s in_monitor plugin endpoint. It provides insights into various plugin metrics while allowing for custom configurations to reduce series cardinality.
This output plugin facilitates direct streaming of Telegraf collected metrics into Splunk via the HTTP Event Collector, enabling easy integration with Splunk’s powerful analytics platform.
Integration details
Fluentd
This plugin gathers metrics from the Fluentd plugin endpoint provided by the in_monitor plugin. It reads data from the /api/plugin.json resource and allows exclusion of specific plugins based on their type.
Splunk
Use Telegraf to easily collect and aggregate metrics from many different sources and send them to Splunk. Utilizing the HTTP output plugin combined with the specialized Splunk metrics serializer, this configuration ensures efficient data ingestion into Splunk’s metrics indexes. The HEC is an advanced mechanism provided by Splunk designed to reliably collect data at scale via HTTP or HTTPS, providing critical capabilities for security, monitoring, and analytics workloads. Telegraf’s integration with Splunk HEC streamlines operations by leveraging standard HTTP protocols, built-in authentication, and structured data serialization, optimizing metrics ingestion and enabling immediate actionable insights.
Configuration
Fluentd
[[inputs.fluentd]]
## This plugin reads information exposed by fluentd (using /api/plugins.json endpoint).
##
## Endpoint:
## - only one URI is allowed
## - https is not supported
endpoint = "http://localhost:24220/api/plugins.json"
## Define which plugins have to be excluded (based on "type" field - e.g. monitor_agent)
exclude = [
"monitor_agent",
"dummy",
]
Splunk
[[outputs.http]]
## Splunk HTTP Event Collector endpoint
url = "https://splunk.example.com:8088/services/collector"
## HTTP method to use
method = "POST"
## Splunk authentication token
headers = {"Authorization" = "Splunk YOUR_SPLUNK_HEC_TOKEN"}
## Serializer for formatting metrics specifically for Splunk
data_format = "splunkmetric"
## Optional parameters
# timeout = "5s"
# insecure_skip_verify = false
# tls_ca = "/path/to/ca.pem"
# tls_cert = "/path/to/cert.pem"
# tls_key = "/path/to/key.pem"
Input and output integration examples
Fluentd
- Basic Configuration: Set up the Fluentd Input Plugin to gather metrics from your Fluentd instance’s monitoring endpoint, ensuring you are able to track performance and usage statistics.
- Excluding Plugins: Use the
exclude
option to ignore specific plugins’ metrics that are not necessary for your monitoring needs, streamlining data collection and focusing on what matters. - Custom Plugin ID: Implement the
@id
parameter in your Fluentd configuration to maintain a consistentplugin_id
, which helps avoid issues with high series cardinality during frequent restarts.
Splunk
-
Real-Time Security Analytics: Utilize this plugin to stream security-related metrics from various applications into Splunk in real-time. Organizations can detect threats instantly by correlating data streams across systems, significantly reducing detection and response times.
-
Multi-Cloud Infrastructure Monitoring: Integrate Telegraf to consolidate metrics from multi-cloud environments directly into Splunk, enabling comprehensive visibility and operational intelligence. This unified monitoring allows teams to detect performance issues quickly and streamline cloud resource management.
-
Dynamic Capacity Planning: Deploy the plugin to continuously push resource metrics from container orchestration platforms (like Kubernetes) into Splunk. Leveraging Splunk’s analytics capabilities, teams can automate predictive scaling and resource allocation, avoiding resource bottlenecks and minimizing costs.
-
Automated Incident Response Workflows: Combine this plugin with Splunk’s alerting system to create automated incident response workflows. Metrics collected by Telegraf trigger real-time alerts and automated remediation scripts, ensuring rapid resolution and maintaining high system availability.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration