Azure Event Hubs and Graylog Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider Azure Event Hubs and InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

The Azure Event Hubs Input Plugin allows Telegraf to consume data from Azure Event Hubs and Azure IoT Hub, enabling efficient data processing and monitoring of event streams from these cloud services.

The Graylog plugin allows you to send Telegraf metrics to a Graylog server, utilizing the GELF format for structured logging.

Integration details

Azure Event Hubs

This plugin serves as a consumer for Azure Event Hubs and Azure IoT Hub, allowing users to ingest data streams from these platforms efficiently. Azure Event Hubs is a highly scalable data streaming platform and event ingestion service capable of receiving and processing millions of events per second, while Azure IoT Hub enables secure device-to-cloud and cloud-to-device communication in IoT applications. The Event Hub Input Plugin interacts seamlessly with these services, providing reliable message consumption and stream processing capabilities. Key features include dynamic management of consumer groups, message tracking to prevent data loss, and customizable settings for prefetch counts, user agents, and metadata handling. This plugin is designed to support a range of use cases, including real-time telemetry data collection, IoT data processing, and integration with various data analysis and monitoring tools within the broader Azure ecosystem.

Graylog

The Graylog plugin is designed for sending metrics to a Graylog instance using the GELF (Graylog Extended Log Format) format. GELF helps standardize the logging data, making it easier for systems to send and analyze logs. The plugin adheres to the GELF specification, which lays out requirements for specific fields within the payload. Notably, the timestamp must be in UNIX format, and if present, the plugin sends the timestamp as-is to Graylog without alterations. If omitted, it automatically generates a timestamp. Additionally, any extra fields not explicitly defined by the spec will be prefixed with an underscore, helping to keep the data organized and compliant with GELF’s requirements. This capability is particularly valuable for users monitoring applications and infrastructure in real-time, as it allows for seamless integration and improved visibility across multiple systems.

Configuration

Azure Event Hubs

[[inputs.eventhub_consumer]]
  ## The default behavior is to create a new Event Hub client from environment variables.
  ## This requires one of the following sets of environment variables to be set:
  ##
  ## 1) Expected Environment Variables:
  ##    - "EVENTHUB_CONNECTION_STRING"
  ##
  ## 2) Expected Environment Variables:
  ##    - "EVENTHUB_NAMESPACE"
  ##    - "EVENTHUB_NAME"
  ##    - "EVENTHUB_KEY_NAME"
  ##    - "EVENTHUB_KEY_VALUE"

  ## 3) Expected Environment Variables:
  ##    - "EVENTHUB_NAMESPACE"
  ##    - "EVENTHUB_NAME"
  ##    - "AZURE_TENANT_ID"
  ##    - "AZURE_CLIENT_ID"
  ##    - "AZURE_CLIENT_SECRET"

  ## Uncommenting the option below will create an Event Hub client based solely on the connection string.
  ## This can either be the associated environment variable or hard coded directly.
  ## If this option is uncommented, environment variables will be ignored.
  ## Connection string should contain EventHubName (EntityPath)
  # connection_string = ""

  ## Set persistence directory to a valid folder to use a file persister instead of an in-memory persister
  # persistence_dir = ""

  ## Change the default consumer group
  # consumer_group = ""

  ## By default the event hub receives all messages present on the broker, alternative modes can be set below.
  ## The timestamp should be in https://github.com/toml-lang/toml#offset-date-time format (RFC 3339).
  ## The 3 options below only apply if no valid persister is read from memory or file (e.g. first run).
  # from_timestamp =
  # latest = true

  ## Set a custom prefetch count for the receiver(s)
  # prefetch_count = 1000

  ## Add an epoch to the receiver(s)
  # epoch = 0

  ## Change to set a custom user agent, "telegraf" is used by default
  # user_agent = "telegraf"

  ## To consume from a specific partition, set the partition_ids option.
  ## An empty array will result in receiving from all partitions.
  # partition_ids = ["0","1"]

  ## Max undelivered messages
  ## This plugin uses tracking metrics, which ensure messages are read to
  ## outputs before acknowledging them to the original broker to ensure data
  ## is not lost. This option sets the maximum messages to read from the
  ## broker that have not been written by an output.
  ##
  ## This value needs to be picked with awareness of the agent's
  ## metric_batch_size value as well. Setting max undelivered messages too high
  ## can result in a constant stream of data batches to the output. While
  ## setting it too low may never flush the broker's messages.
  # max_undelivered_messages = 1000

  ## Set either option below to true to use a system property as timestamp.
  ## You have the choice between EnqueuedTime and IoTHubEnqueuedTime.
  ## It is recommended to use this setting when the data itself has no timestamp.
  # enqueued_time_as_ts = true
  # iot_hub_enqueued_time_as_ts = true

  ## Tags or fields to create from keys present in the application property bag.
  ## These could for example be set by message enrichments in Azure IoT Hub.
  # application_property_tags = []
  # application_property_fields = []

  ## Tag or field name to use for metadata
  ## By default all metadata is disabled
  # sequence_number_field = "SequenceNumber"
  # enqueued_time_field = "EnqueuedTime"
  # offset_field = "Offset"
  # partition_id_tag = "PartitionID"
  # partition_key_tag = "PartitionKey"
  # iot_hub_device_connection_id_tag = "IoTHubDeviceConnectionID"
  # iot_hub_auth_generation_id_tag = "IoTHubAuthGenerationID"
  # iot_hub_connection_auth_method_tag = "IoTHubConnectionAuthMethod"
  # iot_hub_connection_module_id_tag = "IoTHubConnectionModuleID"
  # iot_hub_enqueued_time_field = "IoTHubEnqueuedTime"

  ## Data format to consume.
  ## Each data format has its own unique set of configuration options, read
  ## more about them here:
  ## https://github.com/influxdata/telegraf/blob/master/docs/DATA_FORMATS_INPUT.md
  data_format = "influx"

Graylog

[[outputs.graylog]]
  ## Endpoints for your graylog instances.
  servers = ["udp://127.0.0.1:12201"]

  ## Connection timeout.
  # timeout = "5s"

  ## The field to use as the GELF short_message, if unset the static string
  ## "telegraf" will be used.
  ##   example: short_message_field = "message"
  # short_message_field = ""

  ## According to GELF payload specification, additional fields names must be prefixed
  ## with an underscore. Previous versions did not prefix custom field 'name' with underscore.
  ## Set to true for backward compatibility.
  # name_field_no_prefix = false

  ## Connection retry options
  ## Attempt to connect to the endpoints if the initial connection fails.
  ## If 'false', Telegraf will give up after 3 connection attempt and will
  ## exit with an error. If set to 'true', the plugin will retry to connect
  ## to the unconnected endpoints infinitely.
  # connection_retry = false
  ## Time to wait between connection retry attempts.
  # connection_retry_wait_time = "15s"

  ## Optional TLS Config
  # tls_ca = "/etc/telegraf/ca.pem"
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key = "/etc/telegraf/key.pem"
  ## Use TLS but skip chain & host verification
  # insecure_skip_verify = false

Input and output integration examples

Azure Event Hubs

  1. Real-Time IoT Device Monitoring: Use the Azure Event Hubs Plugin to monitor telemetry data from IoT devices like sensors and actuators. By streaming device data into monitoring dashboards, organizations can gain insights into system performances, track usage patterns, and quickly respond to irregularities. This setup allows for proactive management of devices, improving operational efficiency and reducing downtime.

  2. Event-Driven Data Processing Workflows: Leverage this plugin to trigger data processing workflows in response to events received from Azure Event Hubs. For instance, when a new event arrives, it can initiate data transformation, aggregation, or storage processes, allowing businesses to automate their workflows more effectively. This integration enhances responsiveness and streamlines operations across systems.

  3. Integration with Analytics Platforms: Implement the plugin to funnel event data into analytics platforms like Azure Synapse or Power BI. By integrating real-time streaming data into analytics tools, organizations can perform comprehensive data analysis, drive business intelligence efforts, and create interactive visualizations that inform decision-making.

  4. Cross-Platform Data Sync: Utilize the Azure Event Hubs Plugin to synchronize data streams across diverse systems or platforms. By consuming data from Azure Event Hubs and forwarding it to other systems like databases or cloud storage, organizations can maintain consistent and up-to-date information across their entire architecture, enabling cohesive data strategies.

Graylog

  1. Enhanced Log Management for Cloud Applications: Use the Graylog Telegraf plugin to aggregate logs from cloud-deployed applications across multiple servers. By integrating this plugin, teams can centralize logging data, making it easier to troubleshoot issues, monitor application performance, and maintain compliance with logging standards.

  2. Real-Time Security Monitoring: Leverage the Graylog plugin to collect and send security-related metrics and logs to a Graylog server for real-time analysis. This allows security teams to quickly identify anomalies, track potential breaches, and respond to incidents promptly by correlating logs from various sources within the infrastructure.

  3. Dynamic Alerting and Notification System: Implement the Graylog plugin to enhance alerting mechanisms in your infrastructure. By sending metrics to Graylog, teams can set up dynamic alerts based on log patterns or unexpected behavior, enabling proactive monitoring and rapid incident response strategies.

  4. Cross-Platform Log Consolidation: Use the Graylog plugin to facilitate cross-platform log consolidation across diverse environments such as on-premises, hybrid, and cloud. By standardizing logging in the GELF format, organizations can ensure consistent monitoring and troubleshooting practices, regardless of where their services are hosted.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration