Docker and TimescaleDB Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider Docker and InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

The Docker input plugin allows you to collect metrics from your Docker containers using the Docker Engine API, facilitating enhanced visibility and monitoring of containerized applications.

This output plugin delivers a reliable and efficient mechanism for routing Telegraf collected metrics directly into TimescaleDB. By leveraging PostgreSQL’s robust ecosystem combined with TimescaleDB’s time series optimizations, it supports high-performance data ingestion and advanced querying capabilities.

Integration details

Docker

The Docker input plugin for Telegraf gathers valuable metrics from the Docker Engine API, providing insights into running containers. This plugin utilizes the Official Docker Client to interface with the Engine API, allowing users to monitor various container states, resource allocations, and performance metrics. With options for filtering containers by names and states, along with customizable tags and labels, this plugin supports flexibility in monitoring containerized applications in diverse environments, whether on local systems or within orchestration platforms like Kubernetes. Additionally, it addresses security considerations by requiring permissions for accessing Docker’s daemon and emphasizes proper configuration when deploying within containerized environments.

TimescaleDB

TimescaleDB is an open source time series database built as an extension to PostgreSQL, designed to handle large scale, time-oriented data efficiently. Launched in 2017, TimescaleDB emerged in response to the growing need for a robust, scalable solution that could manage vast volumes of data with high insert rates and complex queries. By leveraging PostgreSQL’s familiar SQL interface and enhancing it with specialized time series capabilities, TimescaleDB quickly gained popularity among developers looking to integrate time series functionality into existing relational databases. Its hybrid approach allows users to benefit from PostgreSQL’s flexibility, reliability, and ecosystem while providing optimized performance for time series data.

The database is particularly effective in environments that demand fast ingestion of data points combined with sophisticated analytical queries over historical periods. TimescaleDB has a number of innovative features like hypertables which transparently partition data into manageable chunks and built-in continuous aggregation. These allow for significantly improved query speed and resource efficiency.

Configuration

Docker

[[inputs.docker]]
  ## Docker Endpoint
  ##   To use TCP, set endpoint = "tcp://[ip]:[port]"
  ##   To use environment variables (ie, docker-machine), set endpoint = "ENV"
  endpoint = "unix:///var/run/docker.sock"

  ## Set to true to collect Swarm metrics(desired_replicas, running_replicas)
  ## Note: configure this in one of the manager nodes in a Swarm cluster.
  ## configuring in multiple Swarm managers results in duplication of metrics.
  gather_services = false

  ## Only collect metrics for these containers. Values will be appended to
  ## container_name_include.
  ## Deprecated (1.4.0), use container_name_include
  container_names = []

  ## Set the source tag for the metrics to the container ID hostname, eg first 12 chars
  source_tag = false

  ## Containers to include and exclude. Collect all if empty. Globs accepted.
  container_name_include = []
  container_name_exclude = []

  ## Container states to include and exclude. Globs accepted.
  ## When empty only containers in the "running" state will be captured.
  # container_state_include = []
  # container_state_exclude = []

  ## Objects to include for disk usage query
  ## Allowed values are "container", "image", "volume" 
  ## When empty disk usage is excluded
  storage_objects = []

  ## Timeout for docker list, info, and stats commands
  timeout = "5s"

  ## Whether to report for each container per-device blkio (8:0, 8:1...),
  ## network (eth0, eth1, ...) and cpu (cpu0, cpu1, ...) stats or not.
  ## Usage of this setting is discouraged since it will be deprecated in favor of 'perdevice_include'.
  ## Default value is 'true' for backwards compatibility, please set it to 'false' so that 'perdevice_include' setting
  ## is honored.
  perdevice = true

  ## Specifies for which classes a per-device metric should be issued
  ## Possible values are 'cpu' (cpu0, cpu1, ...), 'blkio' (8:0, 8:1, ...) and 'network' (eth0, eth1, ...)
  ## Please note that this setting has no effect if 'perdevice' is set to 'true'
  # perdevice_include = ["cpu"]

  ## Whether to report for each container total blkio and network stats or not.
  ## Usage of this setting is discouraged since it will be deprecated in favor of 'total_include'.
  ## Default value is 'false' for backwards compatibility, please set it to 'true' so that 'total_include' setting
  ## is honored.
  total = false

  ## Specifies for which classes a total metric should be issued. Total is an aggregated of the 'perdevice' values.
  ## Possible values are 'cpu', 'blkio' and 'network'
  ## Total 'cpu' is reported directly by Docker daemon, and 'network' and 'blkio' totals are aggregated by this plugin.
  ## Please note that this setting has no effect if 'total' is set to 'false'
  # total_include = ["cpu", "blkio", "network"]

  ## docker labels to include and exclude as tags.  Globs accepted.
  ## Note that an empty array for both will include all labels as tags
  docker_label_include = []
  docker_label_exclude = []

  ## Which environment variables should we use as a tag
  tag_env = ["JAVA_HOME", "HEAP_SIZE"]

  ## Optional TLS Config
  # tls_ca = "/etc/telegraf/ca.pem"
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key = "/etc/telegraf/key.pem"
  ## Use TLS but skip chain & host verification
  # insecure_skip_verify = false

TimescaleDB

# Publishes metrics to a TimescaleDB database
[[outputs.postgresql]]
  ## Specify connection address via the standard libpq connection string:
  ##   host=... user=... password=... sslmode=... dbname=...
  ## Or a URL:
  ##   postgres://[user[:password]]@localhost[/dbname]?sslmode=[disable|verify-ca|verify-full]
  ## See https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNSTRING
  ##
  ## All connection parameters are optional. Environment vars are also supported.
  ## e.g. PGPASSWORD, PGHOST, PGUSER, PGDATABASE
  ## All supported vars can be found here:
  ##  https://www.postgresql.org/docs/current/libpq-envars.html
  ##
  ## Non-standard parameters:
  ##   pool_max_conns (default: 1) - Maximum size of connection pool for parallel (per-batch per-table) inserts.
  ##   pool_min_conns (default: 0) - Minimum size of connection pool.
  ##   pool_max_conn_lifetime (default: 0s) - Maximum connection age before closing.
  ##   pool_max_conn_idle_time (default: 0s) - Maximum idle time of a connection before closing.
  ##   pool_health_check_period (default: 0s) - Duration between health checks on idle connections.
  # connection = ""

  ## Postgres schema to use.
  # schema = "public"

  ## Store tags as foreign keys in the metrics table. Default is false.
  # tags_as_foreign_keys = false

  ## Suffix to append to table name (measurement name) for the foreign tag table.
  # tag_table_suffix = "_tag"

  ## Deny inserting metrics if the foreign tag can't be inserted.
  # foreign_tag_constraint = false

  ## Store all tags as a JSONB object in a single 'tags' column.
  # tags_as_jsonb = false

  ## Store all fields as a JSONB object in a single 'fields' column.
  # fields_as_jsonb = false

  ## Name of the timestamp column
  ## NOTE: Some tools (e.g. Grafana) require the default name so be careful!
  # timestamp_column_name = "time"

  ## Type of the timestamp column
  ## Currently, "timestamp without time zone" and "timestamp with time zone"
  ## are supported
  # timestamp_column_type = "timestamp without time zone"

  ## Templated statements to execute when creating a new table.
  # create_templates = [
  #   '''CREATE TABLE {{ .table }} ({{ .columns }})''',
  # ]

  ## Templated statements to execute when adding columns to a table.
  ## Set to an empty list to disable. Points containing tags for which there is
  ## no column will be skipped. Points containing fields for which there is no
  ## column will have the field omitted.
  # add_column_templates = [
  #   '''ALTER TABLE {{ .table }} ADD COLUMN IF NOT EXISTS {{ .columns|join ", ADD COLUMN IF NOT EXISTS " }}''',
  # ]

  ## Templated statements to execute when creating a new tag table.
  # tag_table_create_templates = [
  #   '''CREATE TABLE {{ .table }} ({{ .columns }}, PRIMARY KEY (tag_id))''',
  # ]

  ## Templated statements to execute when adding columns to a tag table.
  ## Set to an empty list to disable. Points containing tags for which there is
  ## no column will be skipped.
  # tag_table_add_column_templates = [
  #   '''ALTER TABLE {{ .table }} ADD COLUMN IF NOT EXISTS {{ .columns|join ", ADD COLUMN IF NOT EXISTS " }}''',
  # ]

  ## The postgres data type to use for storing unsigned 64-bit integer values
  ## (Postgres does not have a native unsigned 64-bit integer type).
  ## The value can be one of:
  ##   numeric - Uses the PostgreSQL "numeric" data type.
  ##   uint8 - Requires pguint extension (https://github.com/petere/pguint)
  # uint64_type = "numeric"

  ## When using pool_max_conns > 1, and a temporary error occurs, the query is
  ## retried with an incremental backoff. This controls the maximum duration.
  # retry_max_backoff = "15s"

  ## Approximate number of tag IDs to store in in-memory cache (when using
  ## tags_as_foreign_keys). This is an optimization to skip inserting known
  ## tag IDs. Each entry consumes approximately 34 bytes of memory.
  # tag_cache_size = 100000

  ## Cut column names at the given length to not exceed PostgreSQL's
  ## 'identifier length' limit (default: no limit)
  ## (see https://www.postgresql.org/docs/current/limits.html)
  ## Be careful to not create duplicate column names!
  # column_name_length_limit = 0

  ## Enable & set the log level for the Postgres driver.
  # log_level = "warn" # trace, debug, info, warn, error, none

Input and output integration examples

Docker

  1. Monitoring the Performance of Containerized Applications: Use the Docker input plugin in order to track the CPU, memory, disk I/O, and network activity of applications running in Docker containers. By collecting these metrics, DevOps teams can proactively manage resource allocation, troubleshoot performance bottlenecks, and ensure optimal application performance across different environments.

  2. Integrating with Kubernetes: Leverage this plugin to gather metrics from Docker containers orchestrated by Kubernetes. By filtering out unnecessary Kubernetes labels and focusing on key metrics, teams can streamline their monitoring solutions and create dashboards that provide insights into the overall health of microservices running within the Kubernetes cluster.

  3. Capacity Planning and Resource Optimization: Use the metrics collected by the Docker input plugin to perform capacity planning for Docker deployments. Analyzing usage patterns helps identify underutilized resources and over-provisioned containers, guiding decisions on scaling up or down based on actual usage trends.

  4. Automated Alerting for Container Anomalies: Set up alerting rules based on the metrics collected through the Docker plugin to notify teams of unusual spikes in resource usage or service disruptions. This proactive monitoring approach helps maintain service reliability and optimize the performance of containerized applications.

TimescaleDB

  1. Real-Time IoT Data Ingestion: Use the plugin to collect and store sensor data from thousands of IoT devices in real time. This setup facilitates immediate analysis, helping organizations monitor operational efficiency and respond quickly to changing conditions.

  2. Cloud Application Performance Monitoring: Leverage the plugin to feed detailed performance metrics from distributed cloud applications into TimescaleDB. This integration supports real-time dashboards and alerts, enabling teams to swiftly identify and mitigate performance bottlenecks.

  3. Historical Data Analysis and Reporting: Implement a system where long-term metrics are stored in TimescaleDB for comprehensive historical analysis. This approach allows businesses to perform trend analysis, generate detailed reports, and make data-driven decisions based on archived time-series data.

  4. Adaptive Alerting and Anomaly Detection: Integrate the plugin with automated anomaly detection workflows. By continuously streaming metrics to TimescaleDB, machine learning models can analyze data patterns and trigger alerts when anomalies occur, enhancing system reliability and proactive maintenance.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration