Docker and Prometheus Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
The Docker input plugin allows you to collect metrics from your Docker containers using the Docker Engine API, facilitating enhanced visibility and monitoring of containerized applications.
The Prometheus Output Plugin enables Telegraf to expose metrics at an HTTP endpoint for scraping by a Prometheus server. This integration allows users to collect and aggregate metrics from various sources in a format that Prometheus can process efficiently.
Integration details
Docker
The Docker input plugin for Telegraf gathers valuable metrics from the Docker Engine API, providing insights into running containers. This plugin utilizes the Official Docker Client to interface with the Engine API, allowing users to monitor various container states, resource allocations, and performance metrics. With options for filtering containers by names and states, along with customizable tags and labels, this plugin supports flexibility in monitoring containerized applications in diverse environments, whether on local systems or within orchestration platforms like Kubernetes. Additionally, it addresses security considerations by requiring permissions for accessing Docker’s daemon and emphasizes proper configuration when deploying within containerized environments.
Prometheus
This plugin for facilitates the integration with Prometheus, a well-known open-source monitoring and alerting toolkit designed for reliability and efficiency in large-scale environments. By working as a Prometheus client, it allows users to expose a defined set of metrics via an HTTP server that Prometheus can scrape at specified intervals. This plugin plays a crucial role in monitoring diverse systems by allowing them to publish performance metrics in a standardized format, enabling extensive visibility into system health and behavior. Key features include support for configuring various endpoints, enabling TLS for secure communication, and options for HTTP basic authentication. The plugin also integrates seamlessly with global Telegraf configuration settings, supporting extensive customization to fit specific monitoring needs. This promotes interoperability in environments where different systems must communicate performance data effectively. Leveraging Prometheus’s metric format, it allows for flexible metric management through advanced configurations such as metric expiration and collectors control, offering a sophisticated solution for monitoring and alerting workflows.
Configuration
Docker
[[inputs.docker]]
## Docker Endpoint
## To use TCP, set endpoint = "tcp://[ip]:[port]"
## To use environment variables (ie, docker-machine), set endpoint = "ENV"
endpoint = "unix:///var/run/docker.sock"
## Set to true to collect Swarm metrics(desired_replicas, running_replicas)
## Note: configure this in one of the manager nodes in a Swarm cluster.
## configuring in multiple Swarm managers results in duplication of metrics.
gather_services = false
## Only collect metrics for these containers. Values will be appended to
## container_name_include.
## Deprecated (1.4.0), use container_name_include
container_names = []
## Set the source tag for the metrics to the container ID hostname, eg first 12 chars
source_tag = false
## Containers to include and exclude. Collect all if empty. Globs accepted.
container_name_include = []
container_name_exclude = []
## Container states to include and exclude. Globs accepted.
## When empty only containers in the "running" state will be captured.
# container_state_include = []
# container_state_exclude = []
## Objects to include for disk usage query
## Allowed values are "container", "image", "volume"
## When empty disk usage is excluded
storage_objects = []
## Timeout for docker list, info, and stats commands
timeout = "5s"
## Whether to report for each container per-device blkio (8:0, 8:1...),
## network (eth0, eth1, ...) and cpu (cpu0, cpu1, ...) stats or not.
## Usage of this setting is discouraged since it will be deprecated in favor of 'perdevice_include'.
## Default value is 'true' for backwards compatibility, please set it to 'false' so that 'perdevice_include' setting
## is honored.
perdevice = true
## Specifies for which classes a per-device metric should be issued
## Possible values are 'cpu' (cpu0, cpu1, ...), 'blkio' (8:0, 8:1, ...) and 'network' (eth0, eth1, ...)
## Please note that this setting has no effect if 'perdevice' is set to 'true'
# perdevice_include = ["cpu"]
## Whether to report for each container total blkio and network stats or not.
## Usage of this setting is discouraged since it will be deprecated in favor of 'total_include'.
## Default value is 'false' for backwards compatibility, please set it to 'true' so that 'total_include' setting
## is honored.
total = false
## Specifies for which classes a total metric should be issued. Total is an aggregated of the 'perdevice' values.
## Possible values are 'cpu', 'blkio' and 'network'
## Total 'cpu' is reported directly by Docker daemon, and 'network' and 'blkio' totals are aggregated by this plugin.
## Please note that this setting has no effect if 'total' is set to 'false'
# total_include = ["cpu", "blkio", "network"]
## docker labels to include and exclude as tags. Globs accepted.
## Note that an empty array for both will include all labels as tags
docker_label_include = []
docker_label_exclude = []
## Which environment variables should we use as a tag
tag_env = ["JAVA_HOME", "HEAP_SIZE"]
## Optional TLS Config
# tls_ca = "/etc/telegraf/ca.pem"
# tls_cert = "/etc/telegraf/cert.pem"
# tls_key = "/etc/telegraf/key.pem"
## Use TLS but skip chain & host verification
# insecure_skip_verify = false
Prometheus
[[outputs.prometheus_client]]
## Address to listen on.
## ex:
## listen = ":9273"
## listen = "vsock://:9273"
listen = ":9273"
## Maximum duration before timing out read of the request
# read_timeout = "10s"
## Maximum duration before timing out write of the response
# write_timeout = "10s"
## Metric version controls the mapping from Prometheus metrics into Telegraf metrics.
## See "Metric Format Configuration" in plugins/inputs/prometheus/README.md for details.
## Valid options: 1, 2
# metric_version = 1
## Use HTTP Basic Authentication.
# basic_username = "Foo"
# basic_password = "Bar"
## If set, the IP Ranges which are allowed to access metrics.
## ex: ip_range = ["192.168.0.0/24", "192.168.1.0/30"]
# ip_range = []
## Path to publish the metrics on.
# path = "/metrics"
## Expiration interval for each metric. 0 == no expiration
# expiration_interval = "60s"
## Collectors to enable, valid entries are "gocollector" and "process".
## If unset, both are enabled.
# collectors_exclude = ["gocollector", "process"]
## Send string metrics as Prometheus labels.
## Unless set to false all string metrics will be sent as labels.
# string_as_label = true
## If set, enable TLS with the given certificate.
# tls_cert = "/etc/ssl/telegraf.crt"
# tls_key = "/etc/ssl/telegraf.key"
## Set one or more allowed client CA certificate file names to
## enable mutually authenticated TLS connections
# tls_allowed_cacerts = ["/etc/telegraf/clientca.pem"]
## Export metric collection time.
# export_timestamp = false
## Specify the metric type explicitly.
## This overrides the metric-type of the Telegraf metric. Globbing is allowed.
# [outputs.prometheus_client.metric_types]
# counter = []
# gauge = []
Input and output integration examples
Docker
-
Monitoring the Performance of Containerized Applications: Use the Docker input plugin in order to track the CPU, memory, disk I/O, and network activity of applications running in Docker containers. By collecting these metrics, DevOps teams can proactively manage resource allocation, troubleshoot performance bottlenecks, and ensure optimal application performance across different environments.
-
Integrating with Kubernetes: Leverage this plugin to gather metrics from Docker containers orchestrated by Kubernetes. By filtering out unnecessary Kubernetes labels and focusing on key metrics, teams can streamline their monitoring solutions and create dashboards that provide insights into the overall health of microservices running within the Kubernetes cluster.
-
Capacity Planning and Resource Optimization: Use the metrics collected by the Docker input plugin to perform capacity planning for Docker deployments. Analyzing usage patterns helps identify underutilized resources and over-provisioned containers, guiding decisions on scaling up or down based on actual usage trends.
-
Automated Alerting for Container Anomalies: Set up alerting rules based on the metrics collected through the Docker plugin to notify teams of unusual spikes in resource usage or service disruptions. This proactive monitoring approach helps maintain service reliability and optimize the performance of containerized applications.
Prometheus
-
Monitoring Multi-cloud Deployments: Utilize the Prometheus plugin to collect metrics from applications running across multiple cloud providers. This scenario allows teams to centralize monitoring through a single Prometheus instance that scrapes metrics from different environments, providing a unified view of performance metrics across hybrid infrastructures. It streamlines reporting and alerting, enhancing operational efficiency without needing complex integrations.
-
Enhancing Microservices Visibility: Implement the plugin to expose metrics from various microservices within a Kubernetes cluster. Using Prometheus, teams can visualize service metrics in real time, identify bottlenecks, and maintain system health checks. This setup supports adaptive scaling and resource utilization optimization based on insights generated from the collected metrics. It enhances the ability to troubleshoot service interactions, significantly improving the resilience of the microservice architecture.
-
Real-time Anomaly Detection in E-commerce: By leveraging this plugin alongside Prometheus, an e-commerce platform can monitor key performance indicators such as response times and error rates. Integrating anomaly detection algorithms with scraped metrics allows the identification of unexpected patterns indicating potential issues, such as sudden traffic spikes or backend service failure. This proactive monitoring empowers business continuity and operational efficiency, minimizing potential downtimes while ensuring service reliability.
-
Performance Metrics Reporting for APIs: Utilize the Prometheus Output Plugin to gather and report API performance metrics, which can then be visualized in Grafana dashboards. This use case enables detailed analysis of API response times, throughput, and error rates, promoting continuous improvement of API services. By closely monitoring these metrics, teams can quickly react to degradation, ensuring optimal API performance and maintaining a high level of service availability.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration