Docker and New Relic Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider Docker and InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

The Docker input plugin allows you to collect metrics from your Docker containers using the Docker Engine API, facilitating enhanced visibility and monitoring of containerized applications.

This plugin allows the sending of metrics to New Relic Insights using the Metrics API, enabling effective monitoring and analysis of application performance.

Integration details

Docker

The Docker input plugin for Telegraf gathers valuable metrics from the Docker Engine API, providing insights into running containers. This plugin utilizes the Official Docker Client to interface with the Engine API, allowing users to monitor various container states, resource allocations, and performance metrics. With options for filtering containers by names and states, along with customizable tags and labels, this plugin supports flexibility in monitoring containerized applications in diverse environments, whether on local systems or within orchestration platforms like Kubernetes. Additionally, it addresses security considerations by requiring permissions for accessing Docker’s daemon and emphasizes proper configuration when deploying within containerized environments.

New Relic

This plugin writes metrics to New Relic Insights utilizing the Metrics API, which provides a robust mechanism for sending time series data to the New Relic platform. Users must first obtain an Insights API Key to authenticate and authorize their data submissions. The plugin is designed to facilitate easy integration with New Relic’s monitoring and analytics capabilities, supporting a variety of metric types and allowing for efficient data handling. Core features include the ability to add prefixes to metrics for better identification, customizable timeouts for API requests, and support for proxy settings to enhance connectivity. It is essential for users to configure these options according to their requirements, enabling seamless data flow into New Relic for comprehensive real-time analytics and insights.

Configuration

Docker

[[inputs.docker]]
  ## Docker Endpoint
  ##   To use TCP, set endpoint = "tcp://[ip]:[port]"
  ##   To use environment variables (ie, docker-machine), set endpoint = "ENV"
  endpoint = "unix:///var/run/docker.sock"

  ## Set to true to collect Swarm metrics(desired_replicas, running_replicas)
  ## Note: configure this in one of the manager nodes in a Swarm cluster.
  ## configuring in multiple Swarm managers results in duplication of metrics.
  gather_services = false

  ## Only collect metrics for these containers. Values will be appended to
  ## container_name_include.
  ## Deprecated (1.4.0), use container_name_include
  container_names = []

  ## Set the source tag for the metrics to the container ID hostname, eg first 12 chars
  source_tag = false

  ## Containers to include and exclude. Collect all if empty. Globs accepted.
  container_name_include = []
  container_name_exclude = []

  ## Container states to include and exclude. Globs accepted.
  ## When empty only containers in the "running" state will be captured.
  # container_state_include = []
  # container_state_exclude = []

  ## Objects to include for disk usage query
  ## Allowed values are "container", "image", "volume" 
  ## When empty disk usage is excluded
  storage_objects = []

  ## Timeout for docker list, info, and stats commands
  timeout = "5s"

  ## Whether to report for each container per-device blkio (8:0, 8:1...),
  ## network (eth0, eth1, ...) and cpu (cpu0, cpu1, ...) stats or not.
  ## Usage of this setting is discouraged since it will be deprecated in favor of 'perdevice_include'.
  ## Default value is 'true' for backwards compatibility, please set it to 'false' so that 'perdevice_include' setting
  ## is honored.
  perdevice = true

  ## Specifies for which classes a per-device metric should be issued
  ## Possible values are 'cpu' (cpu0, cpu1, ...), 'blkio' (8:0, 8:1, ...) and 'network' (eth0, eth1, ...)
  ## Please note that this setting has no effect if 'perdevice' is set to 'true'
  # perdevice_include = ["cpu"]

  ## Whether to report for each container total blkio and network stats or not.
  ## Usage of this setting is discouraged since it will be deprecated in favor of 'total_include'.
  ## Default value is 'false' for backwards compatibility, please set it to 'true' so that 'total_include' setting
  ## is honored.
  total = false

  ## Specifies for which classes a total metric should be issued. Total is an aggregated of the 'perdevice' values.
  ## Possible values are 'cpu', 'blkio' and 'network'
  ## Total 'cpu' is reported directly by Docker daemon, and 'network' and 'blkio' totals are aggregated by this plugin.
  ## Please note that this setting has no effect if 'total' is set to 'false'
  # total_include = ["cpu", "blkio", "network"]

  ## docker labels to include and exclude as tags.  Globs accepted.
  ## Note that an empty array for both will include all labels as tags
  docker_label_include = []
  docker_label_exclude = []

  ## Which environment variables should we use as a tag
  tag_env = ["JAVA_HOME", "HEAP_SIZE"]

  ## Optional TLS Config
  # tls_ca = "/etc/telegraf/ca.pem"
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key = "/etc/telegraf/key.pem"
  ## Use TLS but skip chain & host verification
  # insecure_skip_verify = false

New Relic

[[outputs.newrelic]]
  ## The 'insights_key' parameter requires a NR license key.
  ## New Relic recommends you create one
  ## with a convenient name such as TELEGRAF_INSERT_KEY.
  ## reference: https://docs.newrelic.com/docs/apis/intro-apis/new-relic-api-keys/#ingest-license-key
  # insights_key = "New Relic License Key Here"

  ## Prefix to add to add to metric name for easy identification.
  ## This is very useful if your metric names are ambiguous.
  # metric_prefix = ""

  ## Timeout for writes to the New Relic API.
  # timeout = "15s"

  ## HTTP Proxy override. If unset use values from the standard
  ## proxy environment variables to determine proxy, if any.
  # http_proxy = "http://corporate.proxy:3128"

  ## Metric URL override to enable geographic location endpoints.
  # If not set use values from the standard
  # metric_url = "https://metric-api.newrelic.com/metric/v1"

Input and output integration examples

Docker

  1. Monitoring the Performance of Containerized Applications: Use the Docker input plugin in order to track the CPU, memory, disk I/O, and network activity of applications running in Docker containers. By collecting these metrics, DevOps teams can proactively manage resource allocation, troubleshoot performance bottlenecks, and ensure optimal application performance across different environments.

  2. Integrating with Kubernetes: Leverage this plugin to gather metrics from Docker containers orchestrated by Kubernetes. By filtering out unnecessary Kubernetes labels and focusing on key metrics, teams can streamline their monitoring solutions and create dashboards that provide insights into the overall health of microservices running within the Kubernetes cluster.

  3. Capacity Planning and Resource Optimization: Use the metrics collected by the Docker input plugin to perform capacity planning for Docker deployments. Analyzing usage patterns helps identify underutilized resources and over-provisioned containers, guiding decisions on scaling up or down based on actual usage trends.

  4. Automated Alerting for Container Anomalies: Set up alerting rules based on the metrics collected through the Docker plugin to notify teams of unusual spikes in resource usage or service disruptions. This proactive monitoring approach helps maintain service reliability and optimize the performance of containerized applications.

New Relic

  1. Application Performance Monitoring: Use the New Relic Telegraf plugin to send application performance metrics from a web service to New Relic Insights. By integrating this plugin, developers can collect data such as response times, error rates, and throughput, enabling teams to monitor application health in real-time and resolve issues quickly before they impact users. This setup promotes proactive management of application performance and user experience.

  2. Infrastructure Metrics Aggregation: Leverage this plugin to aggregate and send system-level metrics (CPU usage, memory consumption, etc.) from various servers to New Relic. This helps system administrators maintain an comprehensive view of infrastructure performance, facilitating capacity planning and identifying potential bottlenecks. By centralizing metrics in New Relic, teams can visualize trends over time and make informed decisions regarding resource allocation.

  3. Dynamic Metric Naming for Multi-tenant Applications: Implement dynamic prefixing with the metric_prefix option to differentiate between different tenants in a multi-tenant application. By configuring the plugin to include a unique identifier per tenant in the metric names, teams can analyze usage patterns and performance metrics per tenant. This provides valuable insights into tenant behavior, supporting tailored optimizations and enhancing service quality across different customer segments.

  4. Real-time Anomaly Detection: Combine the New Relic plugin with alerting mechanisms to trigger notifications based on unusual metric patterns. By sending metrics such as request counts and response times, teams can set thresholds in New Relic that, when breached, will automatically alert responsible parties. This user-driven approach supports immediate responses to potential issues before they escalate into larger incidents.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration