DNS and Prometheus Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider DNS and InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

The DNS plugin enables users to monitor and gather statistics on DNS query times, facilitating performance analysis of DNS resolutions.

The Prometheus Output Plugin enables Telegraf to expose metrics at an HTTP endpoint for scraping by a Prometheus server. This integration allows users to collect and aggregate metrics from various sources in a format that Prometheus can process efficiently.

Integration details

DNS

This plugin gathers DNS query times in milliseconds, utilizing the capabilities of DNS queries similar to the Dig command. It provides a means to monitor and analyze DNS performance by measuring the response time from specified DNS servers, allowing network administrators and engineers to ensure optimal DNS resolution times. The plugin can be configured to target specific servers and customize the types of records queried, encompassing various DNS features such as resolving domain names to IP addresses, or retrieving details from specific records as needed, while also clearly reporting on the success or failure of each query, alongside relevant metadata.

Prometheus

This plugin for facilitates the integration with Prometheus, a well-known open-source monitoring and alerting toolkit designed for reliability and efficiency in large-scale environments. By working as a Prometheus client, it allows users to expose a defined set of metrics via an HTTP server that Prometheus can scrape at specified intervals. This plugin plays a crucial role in monitoring diverse systems by allowing them to publish performance metrics in a standardized format, enabling extensive visibility into system health and behavior. Key features include support for configuring various endpoints, enabling TLS for secure communication, and options for HTTP basic authentication. The plugin also integrates seamlessly with global Telegraf configuration settings, supporting extensive customization to fit specific monitoring needs. This promotes interoperability in environments where different systems must communicate performance data effectively. Leveraging Prometheus’s metric format, it allows for flexible metric management through advanced configurations such as metric expiration and collectors control, offering a sophisticated solution for monitoring and alerting workflows.

Configuration

DNS

[[inputs.dns_query]]
  servers = ["8.8.8.8"]

  # network = "udp"

  # domains = ["."]

  # record_type = "A"

  # port = 53

  # timeout = "2s"

  # include_fields = []
  

Prometheus

[[outputs.prometheus_client]]
  ## Address to listen on.
  ##   ex:
  ##     listen = ":9273"
  ##     listen = "vsock://:9273"
  listen = ":9273"

  ## Maximum duration before timing out read of the request
  # read_timeout = "10s"
  ## Maximum duration before timing out write of the response
  # write_timeout = "10s"

  ## Metric version controls the mapping from Prometheus metrics into Telegraf metrics.
  ## See "Metric Format Configuration" in plugins/inputs/prometheus/README.md for details.
  ## Valid options: 1, 2
  # metric_version = 1

  ## Use HTTP Basic Authentication.
  # basic_username = "Foo"
  # basic_password = "Bar"

  ## If set, the IP Ranges which are allowed to access metrics.
  ##   ex: ip_range = ["192.168.0.0/24", "192.168.1.0/30"]
  # ip_range = []

  ## Path to publish the metrics on.
  # path = "/metrics"

  ## Expiration interval for each metric. 0 == no expiration
  # expiration_interval = "60s"

  ## Collectors to enable, valid entries are "gocollector" and "process".
  ## If unset, both are enabled.
  # collectors_exclude = ["gocollector", "process"]

  ## Send string metrics as Prometheus labels.
  ## Unless set to false all string metrics will be sent as labels.
  # string_as_label = true

  ## If set, enable TLS with the given certificate.
  # tls_cert = "/etc/ssl/telegraf.crt"
  # tls_key = "/etc/ssl/telegraf.key"

  ## Set one or more allowed client CA certificate file names to
  ## enable mutually authenticated TLS connections
  # tls_allowed_cacerts = ["/etc/telegraf/clientca.pem"]

  ## Export metric collection time.
  # export_timestamp = false

  ## Specify the metric type explicitly.
  ## This overrides the metric-type of the Telegraf metric. Globbing is allowed.
  # [outputs.prometheus_client.metric_types]
  #   counter = []
  #   gauge = []

Input and output integration examples

DNS

  1. Monitor DNS Performance for Multiple Servers: By deploying the DNS plugin, a user can simultaneously monitor the performance of different DNS servers, such as Google DNS and Cloudflare DNS, by specifying them in the servers array. This scenario enables comparisons of response times and reliability across different DNS providers, assisting in selecting the best option based on empirical data.

  2. Analyze Query Times for High-Traffic Domains: Integrate the plugin to measure response times specifically for high-traffic domains relevant to an organization’s operations, such as internal services or customer-facing sites. By focusing on performance metrics for these domains, organizations can proactively address latency issues, ensuring service reliability and improving user experiences.

  3. Alerting on DNS Timeouts: Utilize the plugin in combination with alerting systems to notify administrators whenever a DNS query exceeds a defined timeout threshold. This setup can help in proactive troubleshooting of networking issues or server misconfigurations, fostering a rapid response to potential downtime scenarios.

  4. Gather Historical Data for Performance Trends: Use the plugin to collect historical data on DNS query times over extended periods. This data can be used to analyze trends and patterns in DNS performance, enabling better capacity planning, identifying periodic issues, and justifying infrastructure upgrades or changes to DNS architectures.

Prometheus

  1. Monitoring Multi-cloud Deployments: Utilize the Prometheus plugin to collect metrics from applications running across multiple cloud providers. This scenario allows teams to centralize monitoring through a single Prometheus instance that scrapes metrics from different environments, providing a unified view of performance metrics across hybrid infrastructures. It streamlines reporting and alerting, enhancing operational efficiency without needing complex integrations.

  2. Enhancing Microservices Visibility: Implement the plugin to expose metrics from various microservices within a Kubernetes cluster. Using Prometheus, teams can visualize service metrics in real time, identify bottlenecks, and maintain system health checks. This setup supports adaptive scaling and resource utilization optimization based on insights generated from the collected metrics. It enhances the ability to troubleshoot service interactions, significantly improving the resilience of the microservice architecture.

  3. Real-time Anomaly Detection in E-commerce: By leveraging this plugin alongside Prometheus, an e-commerce platform can monitor key performance indicators such as response times and error rates. Integrating anomaly detection algorithms with scraped metrics allows the identification of unexpected patterns indicating potential issues, such as sudden traffic spikes or backend service failure. This proactive monitoring empowers business continuity and operational efficiency, minimizing potential downtimes while ensuring service reliability.

  4. Performance Metrics Reporting for APIs: Utilize the Prometheus Output Plugin to gather and report API performance metrics, which can then be visualized in Grafana dashboards. This use case enables detailed analysis of API response times, throughput, and error rates, promoting continuous improvement of API services. By closely monitoring these metrics, teams can quickly react to degradation, ensuring optimal API performance and maintaining a high level of service availability.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration