DNS and MongoDB Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider DNS and InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

The DNS plugin enables users to monitor and gather statistics on DNS query times, facilitating performance analysis of DNS resolutions.

The MongoDB Telegraf Plugin enables users to send metrics to a MongoDB database, automatically managing time series collections.

Integration details

DNS

This plugin gathers DNS query times in milliseconds, utilizing the capabilities of DNS queries similar to the Dig command. It provides a means to monitor and analyze DNS performance by measuring the response time from specified DNS servers, allowing network administrators and engineers to ensure optimal DNS resolution times. The plugin can be configured to target specific servers and customize the types of records queried, encompassing various DNS features such as resolving domain names to IP addresses, or retrieving details from specific records as needed, while also clearly reporting on the success or failure of each query, alongside relevant metadata.

MongoDB

This plugin sends metrics to MongoDB and seamlessly integrates with its time series functionality, allowing for automatic creation of collections as time series when they don’t already exist. It requires MongoDB version 5.0 or higher to utilize the time series collections feature, which is vital for efficiently storing and querying time-based data. This plugin enhances the monitoring capabilities by ensuring that all relevant metrics are stored and organized correctly within MongoDB, providing users the ability to leverage MongoDB’s powerful querying and aggregation features for time series analysis.

Configuration

DNS

[[inputs.dns_query]]
  servers = ["8.8.8.8"]

  # network = "udp"

  # domains = ["."]

  # record_type = "A"

  # port = 53

  # timeout = "2s"

  # include_fields = []
  

MongoDB

[[outputs.mongodb]]
              # connection string examples for mongodb
              dsn = "mongodb://localhost:27017"
              # dsn = "mongodb://mongod1:27017,mongod2:27017,mongod3:27017/admin&replicaSet=myReplSet&w=1"

              # overrides serverSelectionTimeoutMS in dsn if set
              # timeout = "30s"

              # default authentication, optional
              # authentication = "NONE"

              # for SCRAM-SHA-256 authentication
              # authentication = "SCRAM"
              # username = "root"
              # password = "***"

              # for x509 certificate authentication
              # authentication = "X509"
              # tls_ca = "ca.pem"
              # tls_key = "client.pem"
              # # tls_key_pwd = "changeme" # required for encrypted tls_key
              # insecure_skip_verify = false

              # database to store measurements and time series collections
              # database = "telegraf"

              # granularity can be seconds, minutes, or hours.
              # configuring this value will be based on your input collection frequency.
              # see https://docs.mongodb.com/manual/core/timeseries-collections/#create-a-time-series-collection
              # granularity = "seconds"

              # optionally set a TTL to automatically expire documents from the measurement collections.
              # ttl = "360h"

Input and output integration examples

DNS

  1. Monitor DNS Performance for Multiple Servers: By deploying the DNS plugin, a user can simultaneously monitor the performance of different DNS servers, such as Google DNS and Cloudflare DNS, by specifying them in the servers array. This scenario enables comparisons of response times and reliability across different DNS providers, assisting in selecting the best option based on empirical data.

  2. Analyze Query Times for High-Traffic Domains: Integrate the plugin to measure response times specifically for high-traffic domains relevant to an organization’s operations, such as internal services or customer-facing sites. By focusing on performance metrics for these domains, organizations can proactively address latency issues, ensuring service reliability and improving user experiences.

  3. Alerting on DNS Timeouts: Utilize the plugin in combination with alerting systems to notify administrators whenever a DNS query exceeds a defined timeout threshold. This setup can help in proactive troubleshooting of networking issues or server misconfigurations, fostering a rapid response to potential downtime scenarios.

  4. Gather Historical Data for Performance Trends: Use the plugin to collect historical data on DNS query times over extended periods. This data can be used to analyze trends and patterns in DNS performance, enabling better capacity planning, identifying periodic issues, and justifying infrastructure upgrades or changes to DNS architectures.

MongoDB

  1. Dynamic Logging to MongoDB for IoT Devices: Utilize this plugin to collect and store metrics from a fleet of IoT devices in real-time. By sending device logs directly to MongoDB, you can create a centralized database that allows for easy access and querying of health metrics and performance data, enabling proactive maintenance and troubleshooting based on historical trends.

  2. Time Series Analysis of Web Traffic: Use the MongoDB Telegraf Plugin to gather and analyze web traffic metrics over time. This application can help you understand peak usage times, user interactions, and behavior patterns, which can guide marketing strategies and infrastructure scaling decisions for improved user experience.

  3. Automated Monitoring and Alerting System: Integrate the MongoDB plugin into an automated monitoring system that tracks application performance metrics. With time series collections, you can set up alerts based on specific thresholds, allowing your team to respond to potential issues before they affect users. This proactive management can enhance service reliability and overall performance.

  4. Data Retention and TTL Management in Metrics Storage: Leverage the TTL feature for documents within MongoDB collections to auto-expire outdated metrics. This is particularly useful for environments where only recent performance data is relevant, preventing your MongoDB database from becoming cluttered with old metrics and ensuring efficient data management.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration