Consul and Snowflake Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
The Consul Input Plugin collects health check metrics from a Consul server, allowing users to monitor service statuses effectively.
Telegraf’s SQL plugin allows seamless metric storage in SQL databases. When configured for Snowflake, it employs a specialized DSN format and dynamic table creation to map metrics to the appropriate schema.
Integration details
Consul
The Consul Input Plugin is designed to gather health check statuses from all services registered with Consul, a tool for service discovery and infrastructure management. By querying the Consul API, this plugin helps users monitor the health of their services and ensure that they are operational and meeting service level agreements. It does not provide telemetry data, but users can utilize StatsD if they want to collect those metrics. The plugin offers configuration options to connect to the Consul server, manage authentication, and specify how to handle tags derived from health checks.
Snowflake
Telegraf’s SQL plugin is engineered to dynamically write metrics into an SQL database by creating tables and columns based on the incoming data. When configured for Snowflake, it employs the gosnowflake driver, which uses a DSN that encapsulates credentials, account details, and database configuration in a compact format. This setup allows for the automatic generation of tables where each metric is recorded with precise timestamps, thereby ensuring detailed historical tracking. Although the integration is considered experimental, it leverages Snowflake’s powerful data warehousing capabilities, making it suitable for scalable, cloud-based analytics and reporting solutions.
Configuration
Consul
[[inputs.consul]]
## Consul server address
# address = "localhost:8500"
## URI scheme for the Consul server, one of "http", "https"
# scheme = "http"
## Metric version controls the mapping from Consul metrics into
## Telegraf metrics. Version 2 moved all fields with string values
## to tags.
##
## example: metric_version = 1; deprecated in 1.16
## metric_version = 2; recommended version
# metric_version = 1
## ACL token used in every request
# token = ""
## HTTP Basic Authentication username and password.
# username = ""
# password = ""
## Data center to query the health checks from
# datacenter = ""
## Optional TLS Config
# tls_ca = "/etc/telegraf/ca.pem"
# tls_cert = "/etc/telegraf/cert.pem"
# tls_key = "/etc/telegraf/key.pem"
## Use TLS but skip chain & host verification
# insecure_skip_verify = true
## Consul checks' tag splitting
# When tags are formatted like "key:value" with ":" as a delimiter then
# they will be split and reported as proper key:value in Telegraf
# tag_delimiter = ":"
Snowflake
[[outputs.sql]]
## Database driver
## Valid options: mssql (Microsoft SQL Server), mysql (MySQL), pgx (Postgres),
## sqlite (SQLite3), snowflake (snowflake.com), clickhouse (ClickHouse)
driver = "snowflake"
## Data source name
## For Snowflake, the DSN format typically includes the username, password, account identifier, and optional warehouse, database, and schema.
## Example DSN: "username:password@account/warehouse/db/schema"
data_source_name = "username:password@account/warehouse/db/schema"
## Timestamp column name
timestamp_column = "timestamp"
## Table creation template
## Available template variables:
## {TABLE} - table name as a quoted identifier
## {TABLELITERAL} - table name as a quoted string literal
## {COLUMNS} - column definitions (list of quoted identifiers and types)
table_template = "CREATE TABLE {TABLE} ({COLUMNS})"
## Table existence check template
## Available template variables:
## {TABLE} - table name as a quoted identifier
table_exists_template = "SELECT 1 FROM {TABLE} LIMIT 1"
## Initialization SQL (optional)
init_sql = ""
## Maximum amount of time a connection may be idle. "0s" means connections are never closed due to idle time.
connection_max_idle_time = "0s"
## Maximum amount of time a connection may be reused. "0s" means connections are never closed due to age.
connection_max_lifetime = "0s"
## Maximum number of connections in the idle connection pool. 0 means unlimited.
connection_max_idle = 2
## Maximum number of open connections to the database. 0 means unlimited.
connection_max_open = 0
## Metric type to SQL type conversion
## Defaults to ANSI/ISO SQL types unless overridden. Adjust if needed for Snowflake compatibility.
#[outputs.sql.convert]
# integer = "INT"
# real = "DOUBLE"
# text = "TEXT"
# timestamp = "TIMESTAMP"
# defaultvalue = "TEXT"
# unsigned = "UNSIGNED"
# bool = "BOOL"
Input and output integration examples
Consul
-
Service Health Monitoring Dashboard: Utilize the Consul Input Plugin to create a comprehensive health monitoring dashboard for all services registered with Consul. This allows operations teams to visualize the health status in real time, enabling quick identification of service issues and facilitating rapid responses to service outages or performance degradation.
-
Automated Alerting System: Implement an automated alerting system that uses the health check data gathered by the Consul Input Plugin to trigger notifications whenever a service status changes to critical. This setup can integrate with notification systems like Slack or email, ensuring that team members are alerted immediately to address potential issues.
-
Integration with Incident Management: Leverage the health check data from the Consul Input Plugin to feed into incident management systems. By analyzing the health status trends, teams can prioritize incidents based on the criticality of the affected services and streamline their resolution processes, improving overall service reliability and customer satisfaction.
Snowflake
-
Cloud-Based Data Lake Integration: Utilize the plugin to stream real-time metrics from various sources into Snowflake, enabling the creation of a centralized data lake. This integration supports complex analytics and machine learning workflows on cloud data.
-
Dynamic Business Intelligence Dashboards: Leverage the plugin to automatically generate tables from incoming metrics and feed them into BI tools. This allows businesses to create dynamic dashboards that visualize performance trends and operational insights without manual schema management.
-
Scalable IoT Analytics: Deploy the plugin to capture high-frequency data from IoT devices into Snowflake. This use case facilitates the aggregation and analysis of sensor data, enabling predictive maintenance and real-time monitoring at scale.
-
Historical Trend Analysis for Compliance: Use the plugin to log and archive detailed metric data in Snowflake, which can then be queried for long-term trend analysis and compliance reporting. This setup ensures that organizations can maintain a robust audit trail and perform forensic analysis if needed.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration