Amazon CloudWatch and Google BigQuery Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
This plugin will pull Metric Statistics from Amazon CloudWatch, streamlining the process of monitoring and analyzing AWS resources.
The Google BigQuery plugin allows Telegraf to write metrics to Google Cloud BigQuery, enabling robust data analytics capabilities for telemetry data.
Integration details
Amazon CloudWatch
The Amazon CloudWatch Plugin allows users to pull detailed metric statistics from Amazon’s CloudWatch service. As a monitoring solution, CloudWatch enables users to track various metrics related to AWS resources and applications, facilitating improved operational and performance insights. The plugin uses a structured authentication method that prioritizes security and flexibility through a combination of STS (Security Token Service), shared credentials, environment variables, and EC2 instance profiles, ensuring robust access control to AWS resources. Key features include the ability to define specific metric namespaces, aggregated periods for metrics, and optional inclusion of linked accounts for cross-account monitoring. A significant aspect of this plugin is its capacity to handle both sparse and dense metric formats, allowing for varied output structures depending on user preference. Thus, it supports versatile use cases in cloud monitoring and analytics by providing comprehensive, timely data directly from CloudWatch.
Google BigQuery
The Google BigQuery plugin for Telegraf enables seamless integration with Google Cloud’s BigQuery service, a popular data warehousing and analytics platform. This plugin facilitates the transfer of metrics collected by Telegraf into BigQuery datasets, making it easier for users to perform analyses and generate insights from their telemetry data. It requires authentication through a service account or user credentials and is designed to handle various data types, ensuring that users can maintain the integrity and accuracy of their metrics as they are stored in BigQuery tables. The configuration options allow for customization around dataset specifications and handling metrics, including the management of hyphens in metric names, which are not supported by BigQuery for streaming inserts. This plugin is particularly useful for organizations leveraging the scalability and powerful query capabilities of BigQuery to analyze large volumes of monitoring data.
Configuration
Amazon CloudWatch
[[inputs.cloudwatch]]
region = "us-east-1"
# access_key = ""
# secret_key = ""
# token = ""
# role_arn = ""
# web_identity_token_file = ""
# role_session_name = ""
# profile = ""
# shared_credential_file = ""
# include_linked_accounts = false
# endpoint_url = ""
# use_system_proxy = false
# http_proxy_url = "http://localhost:8888"
period = "5m"
delay = "5m"
interval = "5m"
#recently_active = "PT3H"
# cache_ttl = "1h"
namespaces = ["AWS/ELB"]
# metric_format = "sparse"
# ratelimit = 25
# timeout = "5s"
# batch_size = 500
# statistic_include = ["average", "sum", "minimum", "maximum", sample_count]
# statistic_exclude = []
# [[inputs.cloudwatch.metrics]]
# names = ["Latency", "RequestCount"]
# [[inputs.cloudwatch.metrics.dimensions]]
# name = "LoadBalancerName"
# value = "p-example"
Google BigQuery
# Configuration for Google Cloud BigQuery to send entries
[[outputs.bigquery]]
## Credentials File
credentials_file = "/path/to/service/account/key.json"
## Google Cloud Platform Project
# project = ""
## The namespace for the metric descriptor
dataset = "telegraf"
## Timeout for BigQuery operations.
# timeout = "5s"
## Character to replace hyphens on Metric name
# replace_hyphen_to = "_"
## Write all metrics in a single compact table
# compact_table = ""
Input and output integration examples
Amazon CloudWatch
-
Cross-Account Monitoring: Utilize this plugin to monitor resources across multiple AWS accounts by enabling the
include_linked_accounts
option. This scenario allows companies managing multiple AWS accounts to aggregate metrics into a central monitoring dashboard, providing a unified view of all metrics while ensuring secure data access and compliance through proper role management. -
Dynamic Alerting System: Integrate this plugin with alerting tools to create an automated system that triggers alerts based on defined thresholds for CloudWatch metrics. For instance, if latency metrics exceed specified limits, alerts can be sent to relevant teams, enabling proactive responses to performance issues and reducing downtime.
-
Cost Management Dashboard: Use the metrics gathered from the plugin to build a cost management dashboard that visualizes AWS service usage metrics over time. By correlating these metrics with billing data, organizations can identify high-cost services and take informed actions to optimize their resource usage and spending.
-
Performance Benchmarking for Applications: Leverage the metrics collected from applications running on AWS to perform performance benchmarks. For example, by tracking latency and request count metrics for an ELB, developers can assess the impact of application changes on its performance, making data-driven decisions for optimization.
Google BigQuery
-
Real-Time Analytics Dashboard: Leverage the Google BigQuery plugin to feed live metrics into a custom analytics dashboard hosted on Google Cloud. This setup would allow teams to visualize performance data in real-time, providing insights into system health and usage patterns. By using BigQuery’s querying capabilities, users can easily create tailored reports and dashboards to meet their specific needs, thus enhancing decision-making processes.
-
Cost Management and Optimization Analysis: Utilize the plugin to automatically send cost-related metrics from various services into BigQuery. Analyzing this data can help businesses identify unnecessary expenses and optimize resource usage. By performing aggregation and transformation queries in BigQuery, organizations can create accurate forecasts and manage their cloud spending efficiently.
-
Cross-Team Collaboration on Monitoring Data: Enable different teams within an organization to share their monitoring data using BigQuery. With the help of this Telegraf plugin, teams can push their metrics to a central BigQuery instance, fostering collaboration. This data-sharing approach encourages best practices and cross-functional awareness, leading to collective improvements in system performance and reliability.
-
Historical Analysis for Capacity Planning: By using the BigQuery plugin, companies can collect and store historical metrics data essential for capacity planning. Analyzing trends over time can help anticipate system needs and scale infrastructure proactively. Organizations can create time-series analyses and identify patterns that inform their long-term strategic decisions.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration