Ceph and Mimir Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider Ceph and InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

The Ceph plugin for Telegraf helps in gathering performance metrics from both MON and OSD nodes in a Ceph storage cluster for effective monitoring and management.

This plugin sends Telegraf metrics directly to Grafana’s Mimir database using HTTP, providing scalable and efficient long-term storage and analysis for Prometheus-compatible metrics.

Integration details

Ceph

The Ceph Storage Telegraf plugin is designed to collect performance metrics from Monitor (MON) and Object Storage Daemon (OSD) nodes within a Ceph storage cluster. Ceph, a highly scalable storage system, integrates its metrics collection through this plugin, facilitating easy monitoring of its components. With the introduction of this plugin in the 13.x Mimic release, users can effectively gather detailed insights into the performance and health of their Ceph infrastructure. It functions by scanning configured socket directories for specific Ceph service socket files, executing commands via the Ceph administrative interface, and parsing the returned JSON data for metrics. The metrics are organized based on top-level keys, allowing for efficient monitoring and analysis of cluster performance. This plugin provides valuable capabilities for managing and maintaining the performance of a Ceph cluster by allowing administrators to understand system behavior and identify potential issues proactively.

Mimir

Grafana Mimir supports the Prometheus Remote Write protocol, enabling Telegraf collected metrics to be efficiently ingested into Mimir clusters for large-scale, long-term storage. This integration leverages Prometheus’s well-established standards, allowing users to combine Telegraf’s extensive data collection capabilities with Mimir’s advanced features, such as query federation, multi-tenancy, high availability, and cost-efficient storage. Grafana Mimir’s architecture is optimized for handling high volumes of metric data and delivering fast query responses, making it ideal for complex monitoring environments and distributed systems.

Configuration

Ceph

[[inputs.ceph]]
  ## This is the recommended interval to poll. Too frequent and you
  ## will lose data points due to timeouts during rebalancing and recovery
  interval = '1m'

  ## All configuration values are optional, defaults are shown below

  ## location of ceph binary
  ceph_binary = "/usr/bin/ceph"

  ## directory in which to look for socket files
  socket_dir = "/var/run/ceph"

  ## prefix of MON and OSD socket files, used to determine socket type
  mon_prefix = "ceph-mon"
  osd_prefix = "ceph-osd"
  mds_prefix = "ceph-mds"
  rgw_prefix = "ceph-client"

  ## suffix used to identify socket files
  socket_suffix = "asok"

  ## Ceph user to authenticate as, ceph will search for the corresponding
  ## keyring e.g. client.admin.keyring in /etc/ceph, or the explicit path
  ## defined in the client section of ceph.conf for example:
  ##
  ##     [client.telegraf]
  ##         keyring = /etc/ceph/client.telegraf.keyring
  ##
  ## Consult the ceph documentation for more detail on keyring generation.
  ceph_user = "client.admin"

  ## Ceph configuration to use to locate the cluster
  ceph_config = "/etc/ceph/ceph.conf"

  ## Whether to gather statistics via the admin socket
  gather_admin_socket_stats = true

  ## Whether to gather statistics via ceph commands, requires ceph_user
  ## and ceph_config to be specified
  gather_cluster_stats = false

Mimir

[[outputs.http]]
  url = "http://data-load-balancer-backend-1:9009/api/v1/push"
  data_format = "prometheusremotewrite"
  username = "*****"
  password = "******"
  [outputs.http.headers]
     Content-Type = "application/x-protobuf"
     Content-Encoding = "snappy"
     X-Scope-OrgID = "****"

Input and output integration examples

Ceph

  1. Dynamic Monitoring Dashboard: Utilize the Ceph plugin to create a real-time monitoring dashboard that visually represents the performance metrics of your Ceph cluster. By integrating these metrics into a centralized dashboard, system administrators can gain immediate insights into the health of the storage infrastructure, which aids in quickly identifying and addressing potential issues before they escalate.

  2. Automated Alerting System: Implement the Ceph plugin in conjunction with an alerting solution to automatically notify administrators of performance degradation or operational issues within the Ceph cluster. By defining thresholds for key metrics, organizations can ensure prompt response actions, thereby improving overall system reliability and performance.

  3. Performance Benchmarking: Use the metrics collected by this plugin to conduct performance benchmarking tests across different configurations or hardware setups of your Ceph storage cluster. This process can assist organizations in identifying optimal configurations that enhance performance and resource utilization, promoting a more efficient storage environment.

  4. Capacity Planning and Forecasting: Integrate the metrics gathered from the Ceph storage plugin into broader data analytics and reporting tools to facilitate capacity planning. By analyzing historical metrics, organizations can forecast future utilization trends, enabling informed decisions about scaling storage resources effectively.

Mimir

  1. Enterprise-Scale Kubernetes Monitoring: Integrate Telegraf with Grafana Mimir to stream metrics from Kubernetes clusters at enterprise scale. This enables comprehensive visibility, improved resource allocation, and proactive troubleshooting across hundreds of clusters, leveraging Mimir’s horizontal scalability and high availability.

  2. Multi-tenant SaaS Application Observability: Use this plugin to centralize metrics from diverse SaaS tenants into Grafana Mimir, enabling tenant isolation and accurate billing based on resource usage. This approach provides reliable observability, efficient cost management, and secure multi-tenancy support.

  3. Global Edge Network Performance Tracking: Stream latency and availability metrics from globally distributed edge servers into Grafana Mimir. Organizations can quickly identify performance degradation or outages, leveraging Mimir’s fast querying capabilities to ensure optimal service reliability and user experience.

  4. Real-Time Analytics for High-Volume Microservices: Implement Telegraf metrics collection in high-volume microservices architectures, feeding data into Grafana Mimir for real-time analytics and anomaly detection. Mimir’s powerful querying enables teams to detect anomalies and quickly respond, maintaining high service availability and performance.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration