Azure Monitor and MariaDB Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
Gather metrics from Azure resources using the Azure Monitor API.
This plugin writes metrics from Telegraf directly into MariaDB using parameterized SQL INSERT statements, offering a flexible way to store metrics in structured, relational tables.
Integration details
Azure Monitor
The Azure Monitor Telegraf plugin is specifically designed for gathering metrics from various Azure resources using the Azure Monitor API. Users must provide specific credentials such as client_id
, client_secret
, tenant_id
, and subscription_id
to authenticate and gain access to their Azure resources. Additionally, the plugin supports functionality to collect metrics from both individual resources and resource groups or subscriptions, allowing for flexible and scalable metric collection tailored to user needs. This plugin is ideal for organizations leveraging Azure cloud infrastructure, providing crucial insights into resource performance and utilization over time, facilitating proactive management and optimization of cloud resources.
MariaDB
The SQL output plugin in Telegraf enables direct writing of metrics into SQL-compatible databases like MariaDB by executing parameterized SQL statements. With support for the MySQL driver, the plugin seamlessly integrates with MariaDB for reliable, structured metric storage. This setup is ideal for users who prefer SQL-based analytics or want to store metrics alongside business data for unified querying. MariaDB is a community-developed, enterprise-grade fork of MySQL that emphasizes performance, security, and openness. The plugin supports inserting time series metrics into custom schemas, enabling flexible analytics and integrations with BI tools like Metabase or Grafana using SQL connectors.
Configuration
Azure Monitor
# Gather Azure resources metrics from Azure Monitor API
[[inputs.azure_monitor]]
# can be found under Overview->Essentials in the Azure portal for your application/service
subscription_id = "<>"
# can be obtained by registering an application under Azure Active Directory
client_id = "<>"
# can be obtained by registering an application under Azure Active Directory.
# If not specified Default Azure Credentials chain will be attempted:
# - Environment credentials (AZURE_*)
# - Workload Identity in Kubernetes cluster
# - Managed Identity
# - Azure CLI auth
# - Developer Azure CLI auth
client_secret = "<>"
# can be found under Azure Active Directory->Properties
tenant_id = "<>"
# Define the optional Azure cloud option e.g. AzureChina, AzureGovernment or AzurePublic. The default is AzurePublic.
# cloud_option = "AzurePublic"
# resource target #1 to collect metrics from
[[inputs.azure_monitor.resource_target]]
# can be found under Overview->Essentials->JSON View in the Azure portal for your application/service
# must start with 'resourceGroups/...' ('/subscriptions/xxxxxxxx-xxxx-xxxx-xxx-xxxxxxxxxxxx'
# must be removed from the beginning of Resource ID property value)
resource_id = "<>"
# the metric names to collect
# leave the array empty to use all metrics available to this resource
metrics = [ "<>", "<>" ]
# metrics aggregation type value to collect
# can be 'Total', 'Count', 'Average', 'Minimum', 'Maximum'
# leave the array empty to collect all aggregation types values for each metric
aggregations = [ "<>", "<>" ]
# resource target #2 to collect metrics from
[[inputs.azure_monitor.resource_target]]
resource_id = "<>"
metrics = [ "<>", "<>" ]
aggregations = [ "<>", "<>" ]
# resource group target #1 to collect metrics from resources under it with resource type
[[inputs.azure_monitor.resource_group_target]]
# the resource group name
resource_group = "<>"
# defines the resources to collect metrics from
[[inputs.azure_monitor.resource_group_target.resource]]
# the resource type
resource_type = "<>"
metrics = [ "<>", "<>" ]
aggregations = [ "<>", "<>" ]
# defines the resources to collect metrics from
[[inputs.azure_monitor.resource_group_target.resource]]
resource_type = "<>"
metrics = [ "<>", "<>" ]
aggregations = [ "<>", "<>" ]
# resource group target #2 to collect metrics from resources under it with resource type
[[inputs.azure_monitor.resource_group_target]]
resource_group = "<>"
[[inputs.azure_monitor.resource_group_target.resource]]
resource_type = "<>"
metrics = [ "<>", "<>" ]
aggregations = [ "<>", "<>" ]
# subscription target #1 to collect metrics from resources under it with resource type
[[inputs.azure_monitor.subscription_target]]
resource_type = "<>"
metrics = [ "<>", "<>" ]
aggregations = [ "<>", "<>" ]
# subscription target #2 to collect metrics from resources under it with resource type
[[inputs.azure_monitor.subscription_target]]
resource_type = "<>"
metrics = [ "<>", "<>" ]
aggregations = [ "<>", "<>" ]
</code></pre>
MariaDB
[[outputs.sql]]
## Database driver
## Valid options: mssql (Microsoft SQL Server), mysql (MySQL), pgx (Postgres),
## sqlite (SQLite3), snowflake (snowflake.com) clickhouse (ClickHouse)
driver = "mysql"
## Data source name
## The format of the data source name is different for each database driver.
## See the plugin readme for details.
data_source_name = "username:password@tcp(host:port)/dbname"
## Timestamp column name
timestamp_column = "timestamp"
## Table creation template
## Available template variables:
## {TABLE} - table name as a quoted identifier
## {TABLELITERAL} - table name as a quoted string literal
## {COLUMNS} - column definitions (list of quoted identifiers and types)
table_template = "CREATE TABLE {TABLE}({COLUMNS})"
## SQL INSERT statement with placeholders. Telegraf will substitute values at runtime.
## table_template = "INSERT INTO metrics (timestamp, name, value, tags) VALUES (?, ?, ?, ?)"
## Table existence check template
## Available template variables:
## {TABLE} - tablename as a quoted identifier
table_exists_template = "SELECT 1 FROM {TABLE} LIMIT 1"
## Initialization SQL
init_sql = "SET sql_mode='ANSI_QUOTES';"
## Maximum amount of time a connection may be idle. "0s" means connections are
## never closed due to idle time.
connection_max_idle_time = "0s"
## Maximum amount of time a connection may be reused. "0s" means connections
## are never closed due to age.
connection_max_lifetime = "0s"
## Maximum number of connections in the idle connection pool. 0 means unlimited.
connection_max_idle = 2
## Maximum number of open connections to the database. 0 means unlimited.
connection_max_open = 0
## NOTE: Due to the way TOML is parsed, tables must be at the END of the
## plugin definition, otherwise additional config options are read as part of the
## table
## Metric type to SQL type conversion
## The values on the left are the data types Telegraf has and the values on
## the right are the data types Telegraf will use when sending to a database.
##
## The database values used must be data types the destination database
## understands. It is up to the user to ensure that the selected data type is
## available in the database they are using. Refer to your database
## documentation for what data types are available and supported.
#[outputs.sql.convert]
# integer = "INT"
# real = "DOUBLE"
# text = "TEXT"
# timestamp = "TIMESTAMP"
# defaultvalue = "TEXT"
# unsigned = "UNSIGNED"
# bool = "BOOL"
# ## This setting controls the behavior of the unsigned value. By default the
# ## setting will take the integer value and append the unsigned value to it. The other
# ## option is "literal", which will use the actual value the user provides to
# ## the unsigned option. This is useful for a database like ClickHouse where
# ## the unsigned value should use a value like "uint64".
# # conversion_style = "unsigned_suffix"
Input and output integration examples
Azure Monitor
-
Dynamic Resource Monitoring: Use the Azure Monitor plugin to dynamically gather metrics from Azure resources based on specific criteria like tags or resource types. Organizations can automate the process of loading and unloading resource metrics, enabling better performance tracking and optimization based on resource utilization patterns.
-
Multi-Cloud Monitoring Integration: Integrate metrics collected from Azure Monitor with other cloud providers using a centralized monitoring solution. This allows organizations to view and analyze performance data across multiple cloud deployments, providing a holistic overview of resource performance and costs, and streamlining operations.
-
Anomaly Detection and Alerting: Leverage the metrics gathered via the Azure Monitor plugin in conjunction with machine learning algorithms to detect anomalies in resource utilization. By establishing baseline performance metrics and automatically alerting on deviations, organizations can mitigate risks and address performance issues before they escalate.
-
Historical Performance Analysis: Use the collected Azure metrics to conduct historical analysis by feeding the data into a data warehousing solution. This enables organizations to track trends over time, allowing for detailed reporting and decision-making based on historical performance data.
MariaDB
-
Business Intelligence Integration: Store application performance metrics directly into MariaDB and connect it to BI tools like Metabase or Apache Superset. This setup allows blending of operational data with business KPIs for unified dashboards, enhancing visibility across departments.
-
Compliance Reporting with Historical Metrics: Use this plugin to log metrics into MariaDB for audit and compliance use cases. The relational model enables precise querying of past performance indicators with timestamped entries, supporting regulatory documentation.
-
Custom Alerting Based on SQL Logic: Insert metrics into MariaDB and use custom SQL queries to define alert thresholds or conditions. Combined with cron jobs or scheduled scripts, this enables advanced alerting workflows not possible with traditional metric platforms.
-
IoT Sensor Metrics Storage: Collect sensor data from IoT devices via Telegraf and store it in MariaDB using a normalized schema. This approach is cost-effective and integrates well with existing SQL-based systems for real-time or historical analysis.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration