Amazon ECS and MongoDB Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
The Amazon ECS Input Plugin enables Telegraf to gather metrics from AWS ECS containers, providing detailed insights into container performance and resource usage.
The MongoDB Telegraf Plugin enables users to send metrics to a MongoDB database, automatically managing time series collections.
Integration details
Amazon ECS
The Amazon ECS plugin for Telegraf is designed to collect metrics from ECS (Elastic Container Service) tasks running on AWS Fargate or EC2 instances. By utilizing the ECS metadata and stats API endpoints (v2 and v3), it fetches real-time information about container performance and health within a task. This plugin operates within the same task as the inspected workload, ensuring seamless access to metadata and statistics. Notably, it incorporates ECS-specific features that distinguish it from the Docker input plugin, such as handling unique ECS metadata formats and statistics. Users can include or exclude specific containers and adjust which container states to monitor, along with defining tag options for ECS labels. This flexibility allows for a tailored monitoring experience that aligns with the specific needs of an ECS environment, thereby enhancing observability and control over containerized applications.
MongoDB
This plugin sends metrics to MongoDB and seamlessly integrates with its time series functionality, allowing for automatic creation of collections as time series when they don’t already exist. It requires MongoDB version 5.0 or higher to utilize the time series collections feature, which is vital for efficiently storing and querying time-based data. This plugin enhances the monitoring capabilities by ensuring that all relevant metrics are stored and organized correctly within MongoDB, providing users the ability to leverage MongoDB’s powerful querying and aggregation features for time series analysis.
Configuration
Amazon ECS
[[inputs.ecs]]
# endpoint_url = ""
# container_name_include = []
# container_name_exclude = []
# container_status_include = []
# container_status_exclude = []
ecs_label_include = [ "com.amazonaws.ecs.*" ]
ecs_label_exclude = []
# timeout = "5s"
[[inputs.ecs]]
endpoint_url = "http://169.254.170.2"
# container_name_include = []
# container_name_exclude = []
# container_status_include = []
# container_status_exclude = []
ecs_label_include = [ "com.amazonaws.ecs.*" ]
ecs_label_exclude = []
# timeout = "5s"
MongoDB
[[outputs.mongodb]]
# connection string examples for mongodb
dsn = "mongodb://localhost:27017"
# dsn = "mongodb://mongod1:27017,mongod2:27017,mongod3:27017/admin&replicaSet=myReplSet&w=1"
# overrides serverSelectionTimeoutMS in dsn if set
# timeout = "30s"
# default authentication, optional
# authentication = "NONE"
# for SCRAM-SHA-256 authentication
# authentication = "SCRAM"
# username = "root"
# password = "***"
# for x509 certificate authentication
# authentication = "X509"
# tls_ca = "ca.pem"
# tls_key = "client.pem"
# # tls_key_pwd = "changeme" # required for encrypted tls_key
# insecure_skip_verify = false
# database to store measurements and time series collections
# database = "telegraf"
# granularity can be seconds, minutes, or hours.
# configuring this value will be based on your input collection frequency.
# see https://docs.mongodb.com/manual/core/timeseries-collections/#create-a-time-series-collection
# granularity = "seconds"
# optionally set a TTL to automatically expire documents from the measurement collections.
# ttl = "360h"
Input and output integration examples
Amazon ECS
-
Dynamic Container Monitoring: Use the Amazon ECS plugin to monitor container health dynamically within an autoscaling ECS architecture. As new containers spin up or down, the plugin will automatically adjust the metrics it collects, ensuring that each container’s performance data is captured efficiently without manual configuration.
-
Custom Resource Allocation Alerts: Implement the ECS plugin to establish thresholds for resource usage per container. By integrating with notification systems, teams can receive alerts when a container’s CPU or memory usage exceeds predefined limits, enabling proactive resource management and maintaining application performance.
-
Cost-Optimization Dashboard: Leverage the metrics gathered from the ECS plugin to create a dashboard that visualizes resource usage and costs associated with each container. This insight allows organizations to identify underutilized resources, optimizing costs associated with their container infrastructure, thus driving financial efficiency in cloud operations.
-
Advanced Container Security Monitoring: Utilize this plugin in conjunction with security tools to monitor ECS container metrics for anomalies. By continuously analyzing usage patterns, any sudden spikes or irregular behaviors can be detected, prompting automated security responses and maintaining system integrity.
MongoDB
-
Dynamic Logging to MongoDB for IoT Devices: Utilize this plugin to collect and store metrics from a fleet of IoT devices in real-time. By sending device logs directly to MongoDB, you can create a centralized database that allows for easy access and querying of health metrics and performance data, enabling proactive maintenance and troubleshooting based on historical trends.
-
Time Series Analysis of Web Traffic: Use the MongoDB Telegraf Plugin to gather and analyze web traffic metrics over time. This application can help you understand peak usage times, user interactions, and behavior patterns, which can guide marketing strategies and infrastructure scaling decisions for improved user experience.
-
Automated Monitoring and Alerting System: Integrate the MongoDB plugin into an automated monitoring system that tracks application performance metrics. With time series collections, you can set up alerts based on specific thresholds, allowing your team to respond to potential issues before they affect users. This proactive management can enhance service reliability and overall performance.
-
Data Retention and TTL Management in Metrics Storage: Leverage the TTL feature for documents within MongoDB collections to auto-expire outdated metrics. This is particularly useful for environments where only recent performance data is relevant, preventing your MongoDB database from becoming cluttered with old metrics and ensuring efficient data management.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration