Amazon ECS and Datadog Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider Amazon ECS and InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

The Amazon ECS Input Plugin enables Telegraf to gather metrics from AWS ECS containers, providing detailed insights into container performance and resource usage.

The Datadog Telegraf Plugin enables the submission of metrics to the Datadog Metrics API, facilitating efficient monitoring and data analysis through a reliable metric ingestion process.

Integration details

Amazon ECS

The Amazon ECS plugin for Telegraf is designed to collect metrics from ECS (Elastic Container Service) tasks running on AWS Fargate or EC2 instances. By utilizing the ECS metadata and stats API endpoints (v2 and v3), it fetches real-time information about container performance and health within a task. This plugin operates within the same task as the inspected workload, ensuring seamless access to metadata and statistics. Notably, it incorporates ECS-specific features that distinguish it from the Docker input plugin, such as handling unique ECS metadata formats and statistics. Users can include or exclude specific containers and adjust which container states to monitor, along with defining tag options for ECS labels. This flexibility allows for a tailored monitoring experience that aligns with the specific needs of an ECS environment, thereby enhancing observability and control over containerized applications.

Datadog

This plugin writes to the Datadog Metrics API, enabling users to send metrics for monitoring and performance analysis. By utilizing the Datadog API key, users can configure the plugin to establish a connection with Datadog’s v1 API. The plugin supports various configuration options including connection timeouts, HTTP proxy settings, and data compression methods, ensuring adaptability to different deployment environments. The ability to transform count metrics into rates enhances the integration of Telegraf with Datadog agents, particularly beneficial for applications that rely on real-time performance metrics.

Configuration

Amazon ECS

[[inputs.ecs]]
  # endpoint_url = ""
  # container_name_include = []
  # container_name_exclude = []
  # container_status_include = []
  # container_status_exclude = []
  ecs_label_include = [ "com.amazonaws.ecs.*" ]
  ecs_label_exclude = []
  # timeout = "5s"

[[inputs.ecs]]
  endpoint_url = "http://169.254.170.2"
  # container_name_include = []
  # container_name_exclude = []
  # container_status_include = []
  # container_status_exclude = []
  ecs_label_include = [ "com.amazonaws.ecs.*" ]
  ecs_label_exclude = []
  # timeout = "5s"

Datadog

[[outputs.datadog]]
  ## Datadog API key
  apikey = "my-secret-key"

  ## Connection timeout.
  # timeout = "5s"

  ## Write URL override; useful for debugging.
  ## This plugin only supports the v1 API currently due to the authentication
  ## method used.
  # url = "https://app.datadoghq.com/api/v1/series"

  ## Set http_proxy
  # use_system_proxy = false
  # http_proxy_url = "http://localhost:8888"

  ## Override the default (none) compression used to send data.
  ## Supports: "zlib", "none"
  # compression = "none"

  ## When non-zero, converts count metrics submitted by inputs.statsd
  ## into rate, while dividing the metric value by this number.
  ## Note that in order for metrics to be submitted simultaenously alongside
  ## a Datadog agent, rate_interval has to match the interval used by the
  ## agent - which defaults to 10s
  # rate_interval = 0s

Input and output integration examples

Amazon ECS

  1. Dynamic Container Monitoring: Use the Amazon ECS plugin to monitor container health dynamically within an autoscaling ECS architecture. As new containers spin up or down, the plugin will automatically adjust the metrics it collects, ensuring that each container’s performance data is captured efficiently without manual configuration.

  2. Custom Resource Allocation Alerts: Implement the ECS plugin to establish thresholds for resource usage per container. By integrating with notification systems, teams can receive alerts when a container’s CPU or memory usage exceeds predefined limits, enabling proactive resource management and maintaining application performance.

  3. Cost-Optimization Dashboard: Leverage the metrics gathered from the ECS plugin to create a dashboard that visualizes resource usage and costs associated with each container. This insight allows organizations to identify underutilized resources, optimizing costs associated with their container infrastructure, thus driving financial efficiency in cloud operations.

  4. Advanced Container Security Monitoring: Utilize this plugin in conjunction with security tools to monitor ECS container metrics for anomalies. By continuously analyzing usage patterns, any sudden spikes or irregular behaviors can be detected, prompting automated security responses and maintaining system integrity.

Datadog

  1. Real-Time Infrastructure Monitoring: Use the Datadog plugin to monitor server metrics in real-time by sending CPU usage and memory statistics directly to Datadog. This integration allows IT teams to visualize and analyze system performance metrics in a centralized dashboard, enabling proactive response to any emerging issues, such as resource bottlenecks or server overloads.

  2. Application Performance Tracking: Leverage this plugin to submit application-specific metrics, such as request counts and error rates, to Datadog. By integrating with application monitoring tools, teams can correlate infrastructure metrics with application performance, providing insights that enable them to optimize code performance and improve user experience.

  3. Anomaly Detection in Metrics: Configure the Datadog plugin to send metrics that can trigger alerts and notifications based on unusual patterns detected by Datadog’s machine learning features. This proactive monitoring helps teams swiftly react to potential outages or performance degradation before customers are impacted.

  4. Integrating with Cloud Services: By utilizing the Datadog plugin to send metrics from cloud resources, IT teams can gain visibility into cloud application performance. Monitoring metrics like latency and error rates helps with ensuring service-level agreements (SLAs) are met and also assists in optimizing resource allocation across cloud environments.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration