Amazon ECS and Clickhouse Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
The Amazon ECS Input Plugin enables Telegraf to gather metrics from AWS ECS containers, providing detailed insights into container performance and resource usage.
Telegraf’s SQL plugin sends collected metrics to an SQL database using a straightforward table schema and dynamic column generation. When configured for ClickHouse, it adjusts DSN formatting and type conversion settings to ensure seamless data integration.
Integration details
Amazon ECS
The Amazon ECS plugin for Telegraf is designed to collect metrics from ECS (Elastic Container Service) tasks running on AWS Fargate or EC2 instances. By utilizing the ECS metadata and stats API endpoints (v2 and v3), it fetches real-time information about container performance and health within a task. This plugin operates within the same task as the inspected workload, ensuring seamless access to metadata and statistics. Notably, it incorporates ECS-specific features that distinguish it from the Docker input plugin, such as handling unique ECS metadata formats and statistics. Users can include or exclude specific containers and adjust which container states to monitor, along with defining tag options for ECS labels. This flexibility allows for a tailored monitoring experience that aligns with the specific needs of an ECS environment, thereby enhancing observability and control over containerized applications.
Clickhouse
Telegraf’s SQL plugin is engineered to write metric data into an SQL database by dynamically creating tables and columns based on incoming metrics. When configured for ClickHouse, it utilizes the clickhouse-go v1.5.4 driver, which employs a unique DSN format and a set of specialized type conversion rules to map Telegraf’s data types directly to ClickHouse’s native types. This approach ensures optimal storage and retrieval performance in high-throughput environments, making it well-suited for real-time analytics and large-scale data warehousing. The dynamic schema creation and precise type mapping enable detailed time-series data logging, crucial for monitoring modern, distributed systems.
Configuration
Amazon ECS
[[inputs.ecs]]
# endpoint_url = ""
# container_name_include = []
# container_name_exclude = []
# container_status_include = []
# container_status_exclude = []
ecs_label_include = [ "com.amazonaws.ecs.*" ]
ecs_label_exclude = []
# timeout = "5s"
[[inputs.ecs]]
endpoint_url = "http://169.254.170.2"
# container_name_include = []
# container_name_exclude = []
# container_status_include = []
# container_status_exclude = []
ecs_label_include = [ "com.amazonaws.ecs.*" ]
ecs_label_exclude = []
# timeout = "5s"
Clickhouse
[[outputs.sql]]
## Database driver
## Valid options include mssql, mysql, pgx, sqlite, snowflake, clickhouse
driver = "clickhouse"
## Data source name
## For ClickHouse, the DSN follows the clickhouse-go v1.5.4 format.
## Example DSN: "tcp://localhost:9000?debug=true"
data_source_name = "tcp://localhost:9000?debug=true"
## Timestamp column name
timestamp_column = "timestamp"
## Table creation template
## Available template variables:
## {TABLE} - table name as a quoted identifier
## {TABLELITERAL} - table name as a quoted string literal
## {COLUMNS} - column definitions (list of quoted identifiers and types)
table_template = "CREATE TABLE {TABLE} ({COLUMNS})"
## Table existence check template
## Available template variables:
## {TABLE} - table name as a quoted identifier
table_exists_template = "SELECT 1 FROM {TABLE} LIMIT 1"
## Initialization SQL (optional)
init_sql = ""
## Maximum amount of time a connection may be idle. "0s" means connections are never closed due to idle time.
connection_max_idle_time = "0s"
## Maximum amount of time a connection may be reused. "0s" means connections are never closed due to age.
connection_max_lifetime = "0s"
## Maximum number of connections in the idle connection pool. 0 means unlimited.
connection_max_idle = 2
## Maximum number of open connections to the database. 0 means unlimited.
connection_max_open = 0
## Metric type to SQL type conversion for ClickHouse.
## The conversion maps Telegraf metric types to ClickHouse native data types.
[outputs.sql.convert]
conversion_style = "literal"
integer = "Int64"
text = "String"
timestamp = "DateTime"
defaultvalue = "String"
unsigned = "UInt64"
bool = "UInt8"
real = "Float64"
Input and output integration examples
Amazon ECS
-
Dynamic Container Monitoring: Use the Amazon ECS plugin to monitor container health dynamically within an autoscaling ECS architecture. As new containers spin up or down, the plugin will automatically adjust the metrics it collects, ensuring that each container’s performance data is captured efficiently without manual configuration.
-
Custom Resource Allocation Alerts: Implement the ECS plugin to establish thresholds for resource usage per container. By integrating with notification systems, teams can receive alerts when a container’s CPU or memory usage exceeds predefined limits, enabling proactive resource management and maintaining application performance.
-
Cost-Optimization Dashboard: Leverage the metrics gathered from the ECS plugin to create a dashboard that visualizes resource usage and costs associated with each container. This insight allows organizations to identify underutilized resources, optimizing costs associated with their container infrastructure, thus driving financial efficiency in cloud operations.
-
Advanced Container Security Monitoring: Utilize this plugin in conjunction with security tools to monitor ECS container metrics for anomalies. By continuously analyzing usage patterns, any sudden spikes or irregular behaviors can be detected, prompting automated security responses and maintaining system integrity.
Clickhouse
-
Real-Time Analytics for High-Volume Data: Use the plugin to feed streaming metrics from large-scale systems into ClickHouse. This setup supports ultra-fast query performance and near real-time analytics, ideal for monitoring high-traffic applications.
-
Time-Series Data Warehousing: Integrate the plugin with ClickHouse to create a robust time-series data warehouse. This use case allows organizations to store detailed historical metrics and perform complex queries for trend analysis and capacity planning.
-
Scalable Monitoring in Distributed Environments: Leverage the plugin to dynamically create tables per metric type in ClickHouse, making it easier to manage and query data from a multitude of distributed systems without prior schema definitions.
-
Optimized Storage for IoT Deployments: Deploy the plugin to ingest data from IoT sensors into ClickHouse. Its efficient schema creation and native type mapping facilitate the handling of massive volumes of data, enabling real-time monitoring and predictive maintenance.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration