Apache Zookeeper and New Relic Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider Apache Zookeeper and InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

The Zookeeper Telegraf plugin collects and reports metrics from Zookeeper servers, facilitating monitoring and performance analysis. It utilizes the ‘mntr’ command output to gather essential statistics critical for maintaining Zookeeper’s operational health.

This plugin allows the sending of metrics to New Relic Insights using the Metrics API, enabling effective monitoring and analysis of application performance.

Integration details

Apache Zookeeper

The Zookeeper plugin for Telegraf is designed to collect vital statistics from Zookeeper servers by executing the ‘mntr’ command. This plugin serves as a monitoring tool that captures important metrics related to Zookeeper’s performance, including connection details, latency, and various operational statistics, facilitating the assessment of the health and efficiency of Zookeeper deployments. In contrast to the Prometheus input plugin, which is recommended when the Prometheus metrics provider is enabled, the Zookeeper plugin accesses raw output from the ‘mntr’ command, rendering it tailored for configurations that do not adopt Prometheus for metrics reporting. This unique approach allows administrators to gather Java Properties formatted metrics directly from Zookeeper, ensuring comprehensive visibility into Zookeeper’s operational state and enabling timely responses to performance anomalies. It specifically excels in environments where Zookeeper operates as a centralized service for maintaining configuration information and names for distributed systems, thus providing immeasurable insights essential for troubleshooting and capacity planning.

New Relic

This plugin writes metrics to New Relic Insights utilizing the Metrics API, which provides a robust mechanism for sending time series data to the New Relic platform. Users must first obtain an Insights API Key to authenticate and authorize their data submissions. The plugin is designed to facilitate easy integration with New Relic’s monitoring and analytics capabilities, supporting a variety of metric types and allowing for efficient data handling. Core features include the ability to add prefixes to metrics for better identification, customizable timeouts for API requests, and support for proxy settings to enhance connectivity. It is essential for users to configure these options according to their requirements, enabling seamless data flow into New Relic for comprehensive real-time analytics and insights.

Configuration

Apache Zookeeper

[[inputs.zookeeper]]
  ## An array of address to gather stats about. Specify an ip or hostname
  ## with port. ie localhost:2181, 10.0.0.1:2181, etc.

  ## If no servers are specified, then localhost is used as the host.
  ## If no port is specified, 2181 is used
  servers = [":2181"]

  ## Timeout for metric collections from all servers. Minimum timeout is "1s".
  # timeout = "5s"

  ## Float Parsing - the initial implementation forced any value unable to be
  ## parsed as an int to be a string. Setting this to "float" will attempt to
  ## parse float values as floats and not strings. This would break existing
  ## metrics and may cause issues if a value switches between a float and int.
  # parse_floats = "string"

  ## Optional TLS Config
  # enable_tls = false
  # tls_ca = "/etc/telegraf/ca.pem"
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key = "/etc/telegraf/key.pem"
  ## If false, skip chain & host verification
  # insecure_skip_verify = true

New Relic

[[outputs.newrelic]]
  ## The 'insights_key' parameter requires a NR license key.
  ## New Relic recommends you create one
  ## with a convenient name such as TELEGRAF_INSERT_KEY.
  ## reference: https://docs.newrelic.com/docs/apis/intro-apis/new-relic-api-keys/#ingest-license-key
  # insights_key = "New Relic License Key Here"

  ## Prefix to add to add to metric name for easy identification.
  ## This is very useful if your metric names are ambiguous.
  # metric_prefix = ""

  ## Timeout for writes to the New Relic API.
  # timeout = "15s"

  ## HTTP Proxy override. If unset use values from the standard
  ## proxy environment variables to determine proxy, if any.
  # http_proxy = "http://corporate.proxy:3128"

  ## Metric URL override to enable geographic location endpoints.
  # If not set use values from the standard
  # metric_url = "https://metric-api.newrelic.com/metric/v1"

Input and output integration examples

Apache Zookeeper

  1. Cluster Health Monitoring: Integrate the Zookeeper plugin to monitor the health and performance of a distributed application relying on Zookeeper for configuration management and service discovery. By tracking metrics such as session count, latency, and data size, DevOps teams can identify potential issues before they escalate, ensuring high availability and reliability across applications.

  2. Performance Benchmarks: Utilize the plugin to benchmark Zookeeper performance in varying workload scenarios. This not only helps in understanding how Zookeeper behaves under load but also assists in tuning configurations to optimize throughput and reduce latency during peak operations.

  3. Alerting for Anomalies: Combine this plugin with alerting tools to create a proactive monitoring system that notifies engineers if specific Zookeeper metrics exceed threshold limits, such as open file descriptor counts or high latency values. This enables teams to respond promptly to issues that could impact service reliability.

  4. Historical Data Analysis: Store the metrics collected by the Zookeeper plugin in a time-series database to analyze historical performance trends. This allows teams to evaluate the impact of changes over time, assess the effectiveness of scaling actions, and plan for future capacity needs.

New Relic

  1. Application Performance Monitoring: Use the New Relic Telegraf plugin to send application performance metrics from a web service to New Relic Insights. By integrating this plugin, developers can collect data such as response times, error rates, and throughput, enabling teams to monitor application health in real-time and resolve issues quickly before they impact users. This setup promotes proactive management of application performance and user experience.

  2. Infrastructure Metrics Aggregation: Leverage this plugin to aggregate and send system-level metrics (CPU usage, memory consumption, etc.) from various servers to New Relic. This helps system administrators maintain an comprehensive view of infrastructure performance, facilitating capacity planning and identifying potential bottlenecks. By centralizing metrics in New Relic, teams can visualize trends over time and make informed decisions regarding resource allocation.

  3. Dynamic Metric Naming for Multi-tenant Applications: Implement dynamic prefixing with the metric_prefix option to differentiate between different tenants in a multi-tenant application. By configuring the plugin to include a unique identifier per tenant in the metric names, teams can analyze usage patterns and performance metrics per tenant. This provides valuable insights into tenant behavior, supporting tailored optimizations and enhancing service quality across different customer segments.

  4. Real-time Anomaly Detection: Combine the New Relic plugin with alerting mechanisms to trigger notifications based on unusual metric patterns. By sending metrics such as request counts and response times, teams can set thresholds in New Relic that, when breached, will automatically alert responsible parties. This user-driven approach supports immediate responses to potential issues before they escalate into larger incidents.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration