Apache Zookeeper and MySQL Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
The Zookeeper Telegraf plugin collects and reports metrics from Zookeeper servers, facilitating monitoring and performance analysis. It utilizes the ‘mntr’ command output to gather essential statistics critical for maintaining Zookeeper’s operational health.
The Telegraf SQL plugin allows you to store metrics from Telegraf directly into a MySQL database, making it easier to analyze and visualize the collected metrics.
Integration details
Apache Zookeeper
The Zookeeper plugin for Telegraf is designed to collect vital statistics from Zookeeper servers by executing the ‘mntr’ command. This plugin serves as a monitoring tool that captures important metrics related to Zookeeper’s performance, including connection details, latency, and various operational statistics, facilitating the assessment of the health and efficiency of Zookeeper deployments. In contrast to the Prometheus input plugin, which is recommended when the Prometheus metrics provider is enabled, the Zookeeper plugin accesses raw output from the ‘mntr’ command, rendering it tailored for configurations that do not adopt Prometheus for metrics reporting. This unique approach allows administrators to gather Java Properties formatted metrics directly from Zookeeper, ensuring comprehensive visibility into Zookeeper’s operational state and enabling timely responses to performance anomalies. It specifically excels in environments where Zookeeper operates as a centralized service for maintaining configuration information and names for distributed systems, thus providing immeasurable insights essential for troubleshooting and capacity planning.
MySQL
Telegraf’s SQL output plugin is designed to seamlessly write metric data to a SQL database by dynamically creating tables and columns based on the incoming metrics. When configured for MySQL, the plugin leverages the go-sql-driver/mysql, which requires enabling the ANSI_QUOTES SQL mode to ensure proper handling of quoted identifiers. This dynamic schema creation approach ensures that each metric is stored in its own table with a structure derived from its fields and tags, providing a detailed, timestamped record of system performance. The flexibility of the plugin allows it to handle high-throughput environments, making it ideal for scenarios that demand robust, granular metric logging and historical data analysis.
Configuration
Apache Zookeeper
[[inputs.zookeeper]]
## An array of address to gather stats about. Specify an ip or hostname
## with port. ie localhost:2181, 10.0.0.1:2181, etc.
## If no servers are specified, then localhost is used as the host.
## If no port is specified, 2181 is used
servers = [":2181"]
## Timeout for metric collections from all servers. Minimum timeout is "1s".
# timeout = "5s"
## Float Parsing - the initial implementation forced any value unable to be
## parsed as an int to be a string. Setting this to "float" will attempt to
## parse float values as floats and not strings. This would break existing
## metrics and may cause issues if a value switches between a float and int.
# parse_floats = "string"
## Optional TLS Config
# enable_tls = false
# tls_ca = "/etc/telegraf/ca.pem"
# tls_cert = "/etc/telegraf/cert.pem"
# tls_key = "/etc/telegraf/key.pem"
## If false, skip chain & host verification
# insecure_skip_verify = true
MySQL
[[outputs.sql]]
## Database driver
## Valid options: mssql (Microsoft SQL Server), mysql (MySQL), pgx (Postgres),
## sqlite (SQLite3), snowflake (snowflake.com) clickhouse (ClickHouse)
driver = "mysql"
## Data source name
## The format of the data source name is different for each database driver.
## See the plugin readme for details.
data_source_name = "username:password@tcp(host:port)/dbname"
## Timestamp column name
timestamp_column = "timestamp"
## Table creation template
## Available template variables:
## {TABLE} - table name as a quoted identifier
## {TABLELITERAL} - table name as a quoted string literal
## {COLUMNS} - column definitions (list of quoted identifiers and types)
table_template = "CREATE TABLE {TABLE}({COLUMNS})"
## Table existence check template
## Available template variables:
## {TABLE} - tablename as a quoted identifier
table_exists_template = "SELECT 1 FROM {TABLE} LIMIT 1"
## Initialization SQL
init_sql = "SET sql_mode='ANSI_QUOTES';"
## Maximum amount of time a connection may be idle. "0s" means connections are
## never closed due to idle time.
connection_max_idle_time = "0s"
## Maximum amount of time a connection may be reused. "0s" means connections
## are never closed due to age.
connection_max_lifetime = "0s"
## Maximum number of connections in the idle connection pool. 0 means unlimited.
connection_max_idle = 2
## Maximum number of open connections to the database. 0 means unlimited.
connection_max_open = 0
## NOTE: Due to the way TOML is parsed, tables must be at the END of the
## plugin definition, otherwise additional config options are read as part of the
## table
## Metric type to SQL type conversion
## The values on the left are the data types Telegraf has and the values on
## the right are the data types Telegraf will use when sending to a database.
##
## The database values used must be data types the destination database
## understands. It is up to the user to ensure that the selected data type is
## available in the database they are using. Refer to your database
## documentation for what data types are available and supported.
#[outputs.sql.convert]
# integer = "INT"
# real = "DOUBLE"
# text = "TEXT"
# timestamp = "TIMESTAMP"
# defaultvalue = "TEXT"
# unsigned = "UNSIGNED"
# bool = "BOOL"
# ## This setting controls the behavior of the unsigned value. By default the
# ## setting will take the integer value and append the unsigned value to it. The other
# ## option is "literal", which will use the actual value the user provides to
# ## the unsigned option. This is useful for a database like ClickHouse where
# ## the unsigned value should use a value like "uint64".
# # conversion_style = "unsigned_suffix"
Input and output integration examples
Apache Zookeeper
-
Cluster Health Monitoring: Integrate the Zookeeper plugin to monitor the health and performance of a distributed application relying on Zookeeper for configuration management and service discovery. By tracking metrics such as session count, latency, and data size, DevOps teams can identify potential issues before they escalate, ensuring high availability and reliability across applications.
-
Performance Benchmarks: Utilize the plugin to benchmark Zookeeper performance in varying workload scenarios. This not only helps in understanding how Zookeeper behaves under load but also assists in tuning configurations to optimize throughput and reduce latency during peak operations.
-
Alerting for Anomalies: Combine this plugin with alerting tools to create a proactive monitoring system that notifies engineers if specific Zookeeper metrics exceed threshold limits, such as open file descriptor counts or high latency values. This enables teams to respond promptly to issues that could impact service reliability.
-
Historical Data Analysis: Store the metrics collected by the Zookeeper plugin in a time-series database to analyze historical performance trends. This allows teams to evaluate the impact of changes over time, assess the effectiveness of scaling actions, and plan for future capacity needs.
MySQL
-
Real-Time Web Analytics Storage: Leverage the plugin to capture website performance metrics and store them in MySQL. This setup enables teams to monitor user interactions, analyze traffic patterns, and dynamically adjust site features based on real-time data insights.
-
IoT Device Monitoring: Utilize the plugin to collect metrics from a network of IoT sensors and log them into a MySQL database. This use case supports continuous monitoring of device health and performance, allowing for predictive maintenance and immediate response to anomalies.
-
Financial Transaction Logging: Record high-frequency financial transaction data with precise timestamps. This approach supports robust audit trails, real-time fraud detection, and comprehensive historical analysis for compliance and reporting purposes.
-
Application Performance Benchmarking: Integrate the plugin with application performance monitoring systems to log metrics into MySQL. This facilitates detailed benchmarking and trend analysis over time, enabling organizations to identify performance bottlenecks and optimize resource allocation effectively.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration