Apache and Snowflake Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
This plugin interfaces with the Apache HTTP Server’s mod_status to gather and report performance metrics from the server.
Telegraf’s SQL plugin allows seamless metric storage in SQL databases. When configured for Snowflake, it employs a specialized DSN format and dynamic table creation to map metrics to the appropriate schema.
Integration details
Apache
The Apache plugin collects server performance information using the mod_status module of the Apache HTTP Server. It relies on the mod_status feature, which must be explicitly enabled in the Apache configuration to access a machine-readable status page. This plugin allows users to fetch several metrics related to Apache’s operational performance, including worker status, connection statistics, and server load, thereby facilitating effective monitoring and troubleshooting of web server performance in real-time.
Snowflake
Telegraf’s SQL plugin is engineered to dynamically write metrics into an SQL database by creating tables and columns based on the incoming data. When configured for Snowflake, it employs the gosnowflake driver, which uses a DSN that encapsulates credentials, account details, and database configuration in a compact format. This setup allows for the automatic generation of tables where each metric is recorded with precise timestamps, thereby ensuring detailed historical tracking. Although the integration is considered experimental, it leverages Snowflake’s powerful data warehousing capabilities, making it suitable for scalable, cloud-based analytics and reporting solutions.
Configuration
Apache
[[inputs.apache]]
## An array of URLs to gather from, must be directed at the machine
## readable version of the mod_status page including the auto query string.
## Default is "http://localhost/server-status?auto".
urls = ["http://localhost/server-status?auto"]
## Credentials for basic HTTP authentication.
# username = "myuser"
# password = "mypassword"
## Maximum time to receive response.
# response_timeout = "5s"
## Optional TLS Config
# tls_ca = "/etc/telegraf/ca.pem"
# tls_cert = "/etc/telegraf/cert.pem"
# tls_key = "/etc/telegraf/key.pem"
## Use TLS but skip chain & host verification
# insecure_skip_verify = false
Snowflake
[[outputs.sql]]
## Database driver
## Valid options: mssql (Microsoft SQL Server), mysql (MySQL), pgx (Postgres),
## sqlite (SQLite3), snowflake (snowflake.com), clickhouse (ClickHouse)
driver = "snowflake"
## Data source name
## For Snowflake, the DSN format typically includes the username, password, account identifier, and optional warehouse, database, and schema.
## Example DSN: "username:password@account/warehouse/db/schema"
data_source_name = "username:password@account/warehouse/db/schema"
## Timestamp column name
timestamp_column = "timestamp"
## Table creation template
## Available template variables:
## {TABLE} - table name as a quoted identifier
## {TABLELITERAL} - table name as a quoted string literal
## {COLUMNS} - column definitions (list of quoted identifiers and types)
table_template = "CREATE TABLE {TABLE} ({COLUMNS})"
## Table existence check template
## Available template variables:
## {TABLE} - table name as a quoted identifier
table_exists_template = "SELECT 1 FROM {TABLE} LIMIT 1"
## Initialization SQL (optional)
init_sql = ""
## Maximum amount of time a connection may be idle. "0s" means connections are never closed due to idle time.
connection_max_idle_time = "0s"
## Maximum amount of time a connection may be reused. "0s" means connections are never closed due to age.
connection_max_lifetime = "0s"
## Maximum number of connections in the idle connection pool. 0 means unlimited.
connection_max_idle = 2
## Maximum number of open connections to the database. 0 means unlimited.
connection_max_open = 0
## Metric type to SQL type conversion
## Defaults to ANSI/ISO SQL types unless overridden. Adjust if needed for Snowflake compatibility.
#[outputs.sql.convert]
# integer = "INT"
# real = "DOUBLE"
# text = "TEXT"
# timestamp = "TIMESTAMP"
# defaultvalue = "TEXT"
# unsigned = "UNSIGNED"
# bool = "BOOL"
Input and output integration examples
Apache
-
Real-Time Performance Monitoring: Use the Apache input plugin to set up a real-time dashboard displaying critical performance metrics of your Apache server. By visualizing metrics such as BusyWorkers, and Load averages, you can quickly identify performance bottlenecks and server health issues, aiding in proactive management of web traffic loads.
-
Automated Alerting for Server Issues: Implement alerts based on metrics collected by this plugin to notify administrators in case of performance degradation. For instance, if the
BusyWorkers
metric exceeds a certain threshold, automatic alerts can be triggered, ensuring prompt incident response to maintain uptime and service reliability. -
Historical Performance Analysis: Combine data collected by the Apache plugin with long-term storage solutions to track performance trends over time. This accumulated data helps in understanding usage patterns, forecasting resource needs, and making informed decisions regarding server scaling or optimization.
-
Cross-System Monitoring: Integrate metrics gathered from Apache alongside metrics from other components of your web stack using Telegraf’s capabilities to send data to a centralized monitoring solution. This holistic view can simplify troubleshooting and coordination between different technologies, ensuring optimal system performance across the board.
Snowflake
-
Cloud-Based Data Lake Integration: Utilize the plugin to stream real-time metrics from various sources into Snowflake, enabling the creation of a centralized data lake. This integration supports complex analytics and machine learning workflows on cloud data.
-
Dynamic Business Intelligence Dashboards: Leverage the plugin to automatically generate tables from incoming metrics and feed them into BI tools. This allows businesses to create dynamic dashboards that visualize performance trends and operational insights without manual schema management.
-
Scalable IoT Analytics: Deploy the plugin to capture high-frequency data from IoT devices into Snowflake. This use case facilitates the aggregation and analysis of sensor data, enabling predictive maintenance and real-time monitoring at scale.
-
Historical Trend Analysis for Compliance: Use the plugin to log and archive detailed metric data in Snowflake, which can then be queried for long-term trend analysis and compliance reporting. This setup ensures that organizations can maintain a robust audit trail and perform forensic analysis if needed.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration