Apache and Datadog Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
This plugin interfaces with the Apache HTTP Server’s mod_status to gather and report performance metrics from the server.
The Datadog Telegraf Plugin enables the submission of metrics to the Datadog Metrics API, facilitating efficient monitoring and data analysis through a reliable metric ingestion process.
Integration details
Apache
The Apache plugin collects server performance information using the mod_status module of the Apache HTTP Server. It relies on the mod_status feature, which must be explicitly enabled in the Apache configuration to access a machine-readable status page. This plugin allows users to fetch several metrics related to Apache’s operational performance, including worker status, connection statistics, and server load, thereby facilitating effective monitoring and troubleshooting of web server performance in real-time.
Datadog
This plugin writes to the Datadog Metrics API, enabling users to send metrics for monitoring and performance analysis. By utilizing the Datadog API key, users can configure the plugin to establish a connection with Datadog’s v1 API. The plugin supports various configuration options including connection timeouts, HTTP proxy settings, and data compression methods, ensuring adaptability to different deployment environments. The ability to transform count metrics into rates enhances the integration of Telegraf with Datadog agents, particularly beneficial for applications that rely on real-time performance metrics.
Configuration
Apache
[[inputs.apache]]
## An array of URLs to gather from, must be directed at the machine
## readable version of the mod_status page including the auto query string.
## Default is "http://localhost/server-status?auto".
urls = ["http://localhost/server-status?auto"]
## Credentials for basic HTTP authentication.
# username = "myuser"
# password = "mypassword"
## Maximum time to receive response.
# response_timeout = "5s"
## Optional TLS Config
# tls_ca = "/etc/telegraf/ca.pem"
# tls_cert = "/etc/telegraf/cert.pem"
# tls_key = "/etc/telegraf/key.pem"
## Use TLS but skip chain & host verification
# insecure_skip_verify = false
Datadog
[[outputs.datadog]]
## Datadog API key
apikey = "my-secret-key"
## Connection timeout.
# timeout = "5s"
## Write URL override; useful for debugging.
## This plugin only supports the v1 API currently due to the authentication
## method used.
# url = "https://app.datadoghq.com/api/v1/series"
## Set http_proxy
# use_system_proxy = false
# http_proxy_url = "http://localhost:8888"
## Override the default (none) compression used to send data.
## Supports: "zlib", "none"
# compression = "none"
## When non-zero, converts count metrics submitted by inputs.statsd
## into rate, while dividing the metric value by this number.
## Note that in order for metrics to be submitted simultaenously alongside
## a Datadog agent, rate_interval has to match the interval used by the
## agent - which defaults to 10s
# rate_interval = 0s
Input and output integration examples
Apache
-
Real-Time Performance Monitoring: Use the Apache input plugin to set up a real-time dashboard displaying critical performance metrics of your Apache server. By visualizing metrics such as BusyWorkers, and Load averages, you can quickly identify performance bottlenecks and server health issues, aiding in proactive management of web traffic loads.
-
Automated Alerting for Server Issues: Implement alerts based on metrics collected by this plugin to notify administrators in case of performance degradation. For instance, if the
BusyWorkers
metric exceeds a certain threshold, automatic alerts can be triggered, ensuring prompt incident response to maintain uptime and service reliability. -
Historical Performance Analysis: Combine data collected by the Apache plugin with long-term storage solutions to track performance trends over time. This accumulated data helps in understanding usage patterns, forecasting resource needs, and making informed decisions regarding server scaling or optimization.
-
Cross-System Monitoring: Integrate metrics gathered from Apache alongside metrics from other components of your web stack using Telegraf’s capabilities to send data to a centralized monitoring solution. This holistic view can simplify troubleshooting and coordination between different technologies, ensuring optimal system performance across the board.
Datadog
-
Real-Time Infrastructure Monitoring: Use the Datadog plugin to monitor server metrics in real-time by sending CPU usage and memory statistics directly to Datadog. This integration allows IT teams to visualize and analyze system performance metrics in a centralized dashboard, enabling proactive response to any emerging issues, such as resource bottlenecks or server overloads.
-
Application Performance Tracking: Leverage this plugin to submit application-specific metrics, such as request counts and error rates, to Datadog. By integrating with application monitoring tools, teams can correlate infrastructure metrics with application performance, providing insights that enable them to optimize code performance and improve user experience.
-
Anomaly Detection in Metrics: Configure the Datadog plugin to send metrics that can trigger alerts and notifications based on unusual patterns detected by Datadog’s machine learning features. This proactive monitoring helps teams swiftly react to potential outages or performance degradation before customers are impacted.
-
Integrating with Cloud Services: By utilizing the Datadog plugin to send metrics from cloud resources, IT teams can gain visibility into cloud application performance. Monitoring metrics like latency and error rates helps with ensuring service-level agreements (SLAs) are met and also assists in optimizing resource allocation across cloud environments.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration