ActiveMQ and VictoriaMetrics Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
The ActiveMQ Input Plugin collects metrics from the ActiveMQ message broker through its Console API, providing insights into the performance and status of message queues, topics, and subscribers.
This plugin enables Telegraf to efficiently write metrics directly into VictoriaMetrics using the InfluxDB line protocol, leveraging the performance and scalability features of VictoriaMetrics for large-scale time-series data.
Integration details
ActiveMQ
The ActiveMQ Input Plugin interfaces with the ActiveMQ Console API to gather metrics related to queues, topics, and subscribers. ActiveMQ, a widely-used open-source message broker, supports various messaging protocols and provides a robust Web Console for management and monitoring. This plugin allows users to track essential metrics including queue sizes, consumer counts, and message counts across different ActiveMQ entities, thereby enhancing observability within messaging systems. Users can configure various parameters such as the WebConsole URL and basic authentication credentials to tailor the plugin to their environment. The metrics collected can be used for monitoring the health and performance of messaging applications, facilitating proactive management and troubleshooting.
VictoriaMetrics
VictoriaMetrics supports direct ingestion of metrics in the InfluxDB line protocol, making this plugin ideal for efficient real-time metric storage and retrieval. The integration combines Telegraf’s extensive metric collection capabilities with VictoriaMetrics’ optimized storage and querying features, including compression, fast ingestion rates, and efficient disk utilization. Ideal for cloud-native and large-scale monitoring scenarios, this plugin offers simplicity, robust performance, and high reliability, enabling advanced operational insights and long-term storage solutions for large volumes of metrics.
Configuration
ActiveMQ
[[inputs.activemq]]
## ActiveMQ WebConsole URL
url = "http://127.0.0.1:8161"
## Required ActiveMQ Endpoint
## deprecated in 1.11; use the url option
# server = "192.168.50.10"
# port = 8161
## Credentials for basic HTTP authentication
# username = "admin"
# password = "admin"
## Required ActiveMQ webadmin root path
# webadmin = "admin"
## Maximum time to receive response.
# response_timeout = "5s"
## Optional TLS Config
# tls_ca = "/etc/telegraf/ca.pem"
# tls_cert = "/etc/telegraf/cert.pem"
# tls_key = "/etc/telegraf/key.pem"
## Use TLS but skip chain & host verification
# insecure_skip_verify = false
VictoriaMetrics
[[outputs.influxdb]]
## URL of the VictoriaMetrics write endpoint
urls = ["http://localhost:8428"]
## VictoriaMetrics accepts InfluxDB line protocol directly
database = "db_name"
## Optional authentication
# username = "username"
# password = "password"
# skip_database_creation = true
# exclude_retention_policy_tag = true
# content_encoding = "gzip"
## Timeout for HTTP requests
timeout = "5s"
## Optional TLS configuration
# tls_ca = "/path/to/ca.pem"
# tls_cert = "/path/to/cert.pem"
# tls_key = "/path/to/key.pem"
# insecure_skip_verify = false
Input and output integration examples
ActiveMQ
-
Proactive Queue Monitoring: Use the ActiveMQ plugin to monitor queue sizes in real-time for a high-volume trading application. This implementation allows teams to receive alerts when queue sizes exceed a certain threshold, enabling rapid response to potential downtime caused by backlogs, thereby ensuring continuous availability of trading operations.
-
Performance Baselines and Anomaly Detection: Integrate this plugin with machine learning frameworks to establish performance baselines for message throughput. By analyzing historical data collected through this plugin, teams can flag anomalies in processing rates, leading to quicker identification of issues impacting service reliability and performance.
-
Cross-Messaging System Analytics: Combine metrics from ActiveMQ with those from other messaging systems in a centralized dashboard. Users can visualize and compare performance data, such as enqueue and dequeue rates, providing valuable insights into the overall messaging architecture and assisting in optimizing the message flow between different brokers.
-
Subscriber Performance Insights: Leverage the subscriber metrics collected by this plugin to analyze behavior patterns and optimize configuration for consumer applications. Understanding metrics such as dispatched queue size and counter values can guide adjustments to improve processing efficiency and resource allocation.
VictoriaMetrics
-
Cloud-Native Application Monitoring: Stream metrics from microservices deployed on Kubernetes directly into VictoriaMetrics. By centralizing metrics, organizations can perform real-time monitoring, rapid anomaly detection, and seamless scalability across dynamically evolving cloud environments.
-
Scalable IoT Data Management: Use the plugin to ingest sensor data from IoT deployments into VictoriaMetrics. This approach facilitates real-time analytics, predictive maintenance, and efficient management of massive volumes of sensor data with minimal storage overhead.
-
Financial Systems Performance Tracking: Leverage VictoriaMetrics via this plugin to store and analyze metrics from financial systems, capturing latency, transaction volume, and error rates. Organizations can rapidly identify and resolve performance bottlenecks, ensuring high availability and regulatory compliance.
-
Cross-Environment Performance Dashboards: Integrate metrics from diverse infrastructure components—such as cloud instances, containers, and physical servers into VictoriaMetrics. Using visualization tools, teams can build comprehensive dashboards for end-to-end performance visibility, proactive troubleshooting, and infrastructure optimization.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration