ActiveMQ and ServiceNow Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider ActiveMQ and InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

The ActiveMQ Input Plugin collects metrics from the ActiveMQ message broker through its Console API, providing insights into the performance and status of message queues, topics, and subscribers.

This output plugin streams metrics from Telegraf directly to a ServiceNow MID Server via HTTP, leveraging the nowmetric serializer for efficient integration with ServiceNow’s Operational Intelligence and Event Management.

Integration details

ActiveMQ

The ActiveMQ Input Plugin interfaces with the ActiveMQ Console API to gather metrics related to queues, topics, and subscribers. ActiveMQ, a widely-used open-source message broker, supports various messaging protocols and provides a robust Web Console for management and monitoring. This plugin allows users to track essential metrics including queue sizes, consumer counts, and message counts across different ActiveMQ entities, thereby enhancing observability within messaging systems. Users can configure various parameters such as the WebConsole URL and basic authentication credentials to tailor the plugin to their environment. The metrics collected can be used for monitoring the health and performance of messaging applications, facilitating proactive management and troubleshooting.

ServiceNow

Telegraf can be used to send metric data directly to a ServiceNow MID Server REST endpoint. Metrics are formatted either using ServiceNow’s Operational Intelligence (OI) format or JSONv2 format, enabling seamless integration with ServiceNow’s Event Management and Operational Intelligence platforms. The serializer batches metrics efficiently, reducing network overhead by minimizing the number of HTTP POST requests. This integration allows users to quickly leverage metrics in ServiceNow for enhanced observability, proactive incident management, and performance monitoring, with ServiceNow’s operational intelligence capabilities.

Configuration

ActiveMQ

[[inputs.activemq]]
  ## ActiveMQ WebConsole URL
  url = "http://127.0.0.1:8161"

  ## Required ActiveMQ Endpoint
  ##   deprecated in 1.11; use the url option
  # server = "192.168.50.10"
  # port = 8161

  ## Credentials for basic HTTP authentication
  # username = "admin"
  # password = "admin"

  ## Required ActiveMQ webadmin root path
  # webadmin = "admin"

  ## Maximum time to receive response.
  # response_timeout = "5s"

  ## Optional TLS Config
  # tls_ca = "/etc/telegraf/ca.pem"
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key = "/etc/telegraf/key.pem"
  ## Use TLS but skip chain & host verification
  # insecure_skip_verify = false

ServiceNow

[[outputs.http]]
  ## ServiceNow MID Server metrics endpoint
  url = "http://mid-server.example.com:9082/api/mid/sa/metrics"

  ## HTTP request method
  method = "POST"

  ## Basic Authentication credentials
  username = "evt.integration"
  password = "P@$$w0rd!"

  ## Data serialization format for ServiceNow
  data_format = "nowmetric"

  ## Metric format type: "oi" (default) or "jsonv2"
  nowmetric_format = "oi"

  ## HTTP Headers
  [outputs.http.headers]
    Content-Type = "application/json"
    Accept = "application/json"

  ## Optional timeout
  # timeout = "5s"

  ## TLS configuration options
  # tls_ca = "/etc/telegraf/ca.pem"
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key = "/etc/telegraf/key.pem"
  # insecure_skip_verify = false

Input and output integration examples

ActiveMQ

  1. Proactive Queue Monitoring: Use the ActiveMQ plugin to monitor queue sizes in real-time for a high-volume trading application. This implementation allows teams to receive alerts when queue sizes exceed a certain threshold, enabling rapid response to potential downtime caused by backlogs, thereby ensuring continuous availability of trading operations.

  2. Performance Baselines and Anomaly Detection: Integrate this plugin with machine learning frameworks to establish performance baselines for message throughput. By analyzing historical data collected through this plugin, teams can flag anomalies in processing rates, leading to quicker identification of issues impacting service reliability and performance.

  3. Cross-Messaging System Analytics: Combine metrics from ActiveMQ with those from other messaging systems in a centralized dashboard. Users can visualize and compare performance data, such as enqueue and dequeue rates, providing valuable insights into the overall messaging architecture and assisting in optimizing the message flow between different brokers.

  4. Subscriber Performance Insights: Leverage the subscriber metrics collected by this plugin to analyze behavior patterns and optimize configuration for consumer applications. Understanding metrics such as dispatched queue size and counter values can guide adjustments to improve processing efficiency and resource allocation.

ServiceNow

  1. Proactive Incident Management: Utilize the Telegraf and ServiceNow integration to stream infrastructure and application metrics in real-time to ServiceNow Event Management. Automatically trigger incidents or remediation workflows based on thresholds, significantly reducing incident detection and response times.

  2. End-to-End Application Monitoring: Deploy Telegraf agents across multiple layers of an application stack, sending performance metrics directly into ServiceNow. Leveraging ServiceNow’s Operational Intelligence, teams can correlate metrics across components, quickly identifying performance bottlenecks.

  3. Dynamic CI Performance Tracking: Integrate Telegraf metrics with ServiceNow’s CMDB by using this plugin to push performance data, allowing automatic updates of Configuration Item (CI) health states based on live metrics. This ensures an accurate and current state of infrastructure health in ServiceNow.

  4. Cloud Resource Optimization: Collect metrics from hybrid and multi-cloud infrastructures using Telegraf, streaming directly to ServiceNow. Leverage these metrics for real-time analytics, predictive capacity planning, and resource optimization, enabling proactive management and reduced operational costs.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration