Choosing the right database is a critical choice when building any software application. All databases have different strengths and weaknesses when it comes to performance, so deciding which database has the most benefits and the most minor downsides for your specific use case and data model is an important decision. Below you will find an overview of the key concepts, architecture, features, use cases, and pricing models of StarRocks and OpenTSDB so you can quickly see how they compare against each other.

The primary purpose of this article is to compare how StarRocks and OpenTSDB perform for workloads involving time series data, not for all possible use cases. Time series data typically presents a unique challenge in terms of database performance. This is due to the high volume of data being written and the query patterns to access that data. This article doesn’t intend to make the case for which database is better; it simply provides an overview of each database so you can make an informed decision.

StarRocks vs OpenTSDB Breakdown


 
Database Model

Data warehouse

Time series database

Architecture

StarRocks can be deployed on-premises, in the cloud, or in a hybrid environment, depending on your infrastructure preferences and requirements.

OpenTSDB can be deployed on-premises or in the cloud, with HBase running on a distributed cluster of nodes.

License

Apache 2.0

GNU LGPLv2.1

Use Cases

Business intelligence, analytics, real-time data processing, large-scale data storage

Monitoring, observability, IoT, log data storage

Scalability

Horizontally scalable, with support for distributed storage and query processing

Horizontally scalable across multiple nodes using HBase as its storage backend

Looking for the most efficient way to get started?

Whether you are looking for cost savings, lower management overhead, or open source, InfluxDB can help.

StarRocks Overview

StarRocks is an open source high-performance analytical data warehouse that enables real-time, multi-dimensional, and highly concurrent data analysis. It features an MPP (Massively Parallel Processing) architecture and is equipped with a fully vectorized execution engine and a columnar storage engine that supports real-time updates.

OpenTSDB Overview

OpenTSDB (Open Time Series Database) is an open-source, distributed, and scalable time series database built on top of Apache HBase, a NoSQL database. OpenTSDB was designed to address the growing need for storing and processing large volumes of time series data generated by various sources, such as IoT devices, sensors, and monitoring systems. It was initially developed by StumbleUpon in 2010 and later became an independent project with an active community of contributors.


StarRocks for Time Series Data

StarRocks is primarily focused on data warehousing workloads but can be used for time series data. StarRocks can be used for real time analytics and historical data analysis.

OpenTSDB for Time Series Data

OpenTSDB is designed for time series data storage and analysis, making it an ideal choice for managing large scale time series datasets. Its architecture enables high write and query performance, and it can handle millions of data points per second with minimal resource consumption. OpenTSDB’s flexible querying capabilities allow users to perform complex analysis on time series data efficiently.


StarRocks Key Concepts

  • MPP Architecture: StarRocks utilizes an MPP architecture, which enables parallel processing and distributed execution of queries, allowing for high-performance and scalability.
  • Vectorized Execution Engine: StarRocks employs a fully vectorized execution engine that leverages SIMD (Single Instruction, Multiple Data) instructions to process data in batches, resulting in optimized query performance.
  • Columnar Storage Engine: The columnar storage engine in StarRocks organizes data by column, which improves query performance by only accessing the necessary columns during query execution.
  • Cost-Based Optimizer (CBO): StarRocks includes a fully-customized cost-based optimizer that evaluates different query execution plans and selects the most efficient plan based on estimated costs.
  • Materialized View: StarRocks supports intelligent materialized views, which are precomputed summaries of data that accelerate query performance by providing faster access to aggregated data.

OpenTSDB Key Concepts

  • Data Point: A single measurement in time consisting of a timestamp, metric, value, and associated tags.
  • Metric: A named value that represents a specific aspect of a system, such as CPU usage or temperature.
  • Tags: Key-value pairs associated with data points that provide metadata and help categorize and query the data.


StarRocks Architecture

StarRock’s architecture includes a fully vectorized execution engine and a columnar storage engine for efficient data processing and storage. It also incorporates features like a cost-based optimizer and materialized views for optimized query performance. StarRocks supports real-time and batch data ingestion from a variety of sources and enables direct analysis of data stored in data lakes without data migration

OpenTSDB Architecture

OpenTSDB is built on top of Apache HBase, a distributed and scalable NoSQL database, and relies on its architecture for data storage and management. OpenTSDB stores time series data in HBase tables, with data points organized by metric, timestamp, and tags. The database uses a schema-less data model, which allows for flexibility when adding new metrics and tags. The OpenTSDB architecture also supports horizontal scaling by distributing data across multiple HBase nodes.

Free Time-Series Database Guide

Get a comprehensive review of alternatives and critical requirements for selecting yours.

StarRocks Features

Multi-Dimensional Analysis

StarRocks supports multi-dimensional analysis, enabling users to explore data from different dimensions and perspectives.

High Concurrency

StarRocks is designed to handle high levels of concurrency, allowing multiple users to execute queries simultaneously.

Materialized View

StarRocks supports materialized views, which provide precomputed summaries of data for faster query performance.

OpenTSDB Features

Scalability

OpenTSDB’s distributed architecture allows for horizontal scaling, ensuring that the database can handle growing volumes of time series data.

Data Compression

OpenTSDB uses various compression techniques to reduce the storage footprint of time series data.

Query Language with time series support

OpenTSDB features a flexible query language that supports aggregation, downsampling, filtering, and other operations for analyzing time series data.


StarRocks Use Cases

Real-Time Analytics

StarRocks is well-suited for real-time analytics scenarios, where users need to analyze data as it arrives, enabling them to make timely and data-driven decisions.

Ad-Hoc Queries

With its high-performance and highly concurrent data analysis capabilities, StarRocks is ideal for ad-hoc querying, allowing users to explore and analyze data interactively.

Data Lake Analytics

StarRocks supports analyzing data directly from data lakes without the need for data migration. This makes it a valuable tool for organizations leveraging data lakes for storage and analysis.

OpenTSDB Use Cases

Monitoring and Alerting

OpenTSDB is well-suited for large-scale monitoring and alerting systems that generate vast amounts of time series data from various sources.

IoT Data Storage

OpenTSDB can store and analyze time series data generated by IoT devices, such as sensors and smart appliances, enabling real-time insights and analytics.

Performance Analysis

OpenTSDB’s flexible querying capabilities make it an ideal choice for analyzing system and application performance metrics over time.


StarRocks Pricing Model

StarRocks can be deployed on your own hardware using the open source project. There are also a number of commercial vendors offering managed services to run StarRocks in the cloud.

OpenTSDB Pricing Model

OpenTSDB is open-source software, which means it is free to use without any licensing fees. However, the cost of running OpenTSDB depends on the infrastructure required to support the underlying HBase database, such as cloud services or on-premises hardware.