SQL Server vs StarRocks
A detailed comparison
Compare SQL Server and StarRocks for time series and OLAP workloads
Learn About Time Series DatabasesChoosing the right database is a critical choice when building any software application. All databases have different strengths and weaknesses when it comes to performance, so deciding which database has the most benefits and the most minor downsides for your specific use case and data model is an important decision. Below you will find an overview of the key concepts, architecture, features, use cases, and pricing models of SQL Server and StarRocks so you can quickly see how they compare against each other.
The primary purpose of this article is to compare how SQL Server and StarRocks perform for workloads involving time series data, not for all possible use cases. Time series data typically presents a unique challenge in terms of database performance. This is due to the high volume of data being written and the query patterns to access that data. This article doesn’t intend to make the case for which database is better; it simply provides an overview of each database so you can make an informed decision.
SQL Server vs StarRocks Breakdown
Database Model | Relational database |
Data warehouse |
Architecture | SQL Server can be deployed on-premises, in virtual machines, or as a managed cloud service (Azure SQL Database) on Microsoft Azure. It is available in multiple editions tailored to different use cases, such as Express, Standard, and Enterprise. |
StarRocks can be deployed on-premises, in the cloud, or in a hybrid environment, depending on your infrastructure preferences and requirements. |
License | Closed source |
Apache 2.0 |
Use Cases | Transaction processing, business intelligence, data warehousing, analytics, web applications, enterprise applications |
Business intelligence, analytics, real-time data processing, large-scale data storage |
Scalability | Supports vertical and horizontal scaling, with features like partitioning, sharding, and replication for distributed environments |
Horizontally scalable, with support for distributed storage and query processing |
Looking for the most efficient way to get started?
Whether you are looking for cost savings, lower management overhead, or open source, InfluxDB can help.
SQL Server Overview
Microsoft SQL Server is a powerful and widely used relational database management system developed by Microsoft. Initially released in 1989, it has evolved over the years to become one of the most popular database systems for businesses of all sizes. SQL Server is known for its robust performance, security, and ease of use. It supports a variety of platforms, including Windows, Linux, and containers, providing flexibility for different deployment scenarios.
StarRocks Overview
StarRocks is an open source high-performance analytical data warehouse that enables real-time, multi-dimensional, and highly concurrent data analysis. It features an MPP (Massively Parallel Processing) architecture and is equipped with a fully vectorized execution engine and a columnar storage engine that supports real-time updates.
SQL Server for Time Series Data
While Microsoft SQL Server is primarily a relational database, it does offer support for time series data through various features and optimizations. Temporal tables allow for tracking changes in data over time, providing an efficient way to store and query historical data. Indexing and partitioning can be leveraged to optimize time series data storage and retrieval. However, SQL Server may not be the best choice for applications requiring high write or query throughput specifically for time series data, as specialized time series databases offer more optimized solutions as well as a variety of developer productivity features that speed up development time for applications that heavily use time series data.
StarRocks for Time Series Data
StarRocks is primarily focused on data warehousing workloads but can be used for time series data. StarRocks can be used for real time analytics and historical data analysis.
SQL Server Key Concepts
- T-SQL: Transact-SQL, an extension of SQL that adds procedural programming elements, such as loops, conditional statements, and error handling, to the standard SQL language.
- SSMS: SQL Server Management Studio, an integrated environment for managing SQL Server instances, databases, and objects.
- Always On: A suite of high availability and disaster recovery features in SQL Server, including Always On Availability Groups and Always On Failover Cluster Instances.
StarRocks Key Concepts
- MPP Architecture: StarRocks utilizes an MPP architecture, which enables parallel processing and distributed execution of queries, allowing for high-performance and scalability.
- Vectorized Execution Engine: StarRocks employs a fully vectorized execution engine that leverages SIMD (Single Instruction, Multiple Data) instructions to process data in batches, resulting in optimized query performance.
- Columnar Storage Engine: The columnar storage engine in StarRocks organizes data by column, which improves query performance by only accessing the necessary columns during query execution.
- Cost-Based Optimizer (CBO): StarRocks includes a fully-customized cost-based optimizer that evaluates different query execution plans and selects the most efficient plan based on estimated costs.
- Materialized View: StarRocks supports intelligent materialized views, which are precomputed summaries of data that accelerate query performance by providing faster access to aggregated data.
SQL Server Architecture
Microsoft SQL Server is a relational database that uses SQL for querying and manipulating data. It follows a client-server architecture, with the database server hosting the data and processing requests from clients. SQL Server supports both on-premises and cloud-based deployment through Azure SQL Database, a managed service offering in the Microsoft Azure cloud. SQL Server’s architecture includes components such as the Database Engine, which processes data storage and retrieval, and various services for reporting, integration, and analysis.
StarRocks Architecture
StarRock’s architecture includes a fully vectorized execution engine and a columnar storage engine for efficient data processing and storage. It also incorporates features like a cost-based optimizer and materialized views for optimized query performance. StarRocks supports real-time and batch data ingestion from a variety of sources and enables direct analysis of data stored in data lakes without data migration
Free Time-Series Database Guide
Get a comprehensive review of alternatives and critical requirements for selecting yours.
SQL Server Features
Security
SQL Server offers advanced security features, such as Transparent Data Encryption, Always Encrypted, and row-level security, to protect sensitive data.
Scalability
SQL Server supports scaling out through features like replication, distributed partitioned views, and Always On Availability Groups.
Integration Services
SQL Server Integration Services (SSIS) is a powerful platform for building high-performance data integration and transformation solutions.
StarRocks Features
Multi-Dimensional Analysis
StarRocks supports multi-dimensional analysis, enabling users to explore data from different dimensions and perspectives.
High Concurrency
StarRocks is designed to handle high levels of concurrency, allowing multiple users to execute queries simultaneously.
Materialized View
StarRocks supports materialized views, which provide precomputed summaries of data for faster query performance.
SQL Server Use Cases
Enterprise Applications
SQL Server is commonly used as the backend database for enterprise applications, providing a reliable and secure data storage solution.
Data Warehousing and Business Intelligence
SQL Server’s built-in analytical features, such as Analysis Services and Reporting Services, make it suitable for data warehousing and business intelligence applications.
E-commerce Platforms
SQL Server’s performance and scalability features enable it to support the demanding workloads of e-commerce platforms, handling high volumes of transactions and user data.
StarRocks Use Cases
Real-Time Analytics
StarRocks is well-suited for real-time analytics scenarios, where users need to analyze data as it arrives, enabling them to make timely and data-driven decisions.
Ad-Hoc Queries
With its high-performance and highly concurrent data analysis capabilities, StarRocks is ideal for ad-hoc querying, allowing users to explore and analyze data interactively.
Data Lake Analytics
StarRocks supports analyzing data directly from data lakes without the need for data migration. This makes it a valuable tool for organizations leveraging data lakes for storage and analysis.
SQL Server Pricing Model
Microsoft SQL Server offers a variety of licensing options, including per-core, server + CAL (Client Access License), and subscription-based models for cloud deployments. Costs depend on factors such as the edition (Standard, Enterprise, or Developer), the number of cores, and the required features. For cloud-based deployments, Azure SQL Database offers a pay-as-you-go model with various service tiers to accommodate different performance and resource requirements.
StarRocks Pricing Model
StarRocks can be deployed on your own hardware using the open source project. There are also a number of commercial vendors offering managed services to run StarRocks in the cloud.
Get started with InfluxDB for free
InfluxDB Cloud is the fastest way to start storing and analyzing your time series data.