Snowflake vs StarRocks
A detailed comparison
Compare Snowflake and StarRocks for time series and OLAP workloads
Learn About Time Series DatabasesChoosing the right database is a critical choice when building any software application. All databases have different strengths and weaknesses when it comes to performance, so deciding which database has the most benefits and the most minor downsides for your specific use case and data model is an important decision. Below you will find an overview of the key concepts, architecture, features, use cases, and pricing models of Snowflake and StarRocks so you can quickly see how they compare against each other.
The primary purpose of this article is to compare how Snowflake and StarRocks perform for workloads involving time series data, not for all possible use cases. Time series data typically presents a unique challenge in terms of database performance. This is due to the high volume of data being written and the query patterns to access that data. This article doesn’t intend to make the case for which database is better; it simply provides an overview of each database so you can make an informed decision.
Snowflake vs StarRocks Breakdown
Database Model | Cloud data warehouse |
Data warehouse |
Architecture | Snowflake can be deployed across multiple cloud providers, including AWS, Azure, and Google Cloud |
StarRocks can be deployed on-premises, in the cloud, or in a hybrid environment, depending on your infrastructure preferences and requirements. |
License | Closed source |
Apache 2.0 |
Use Cases | Big data analytics, Data warehousing, Data engineering, Data sharing, Machine learning |
Business intelligence, analytics, real-time data processing, large-scale data storage |
Scalability | Highly scalable with multi-cluster shared data architecture, automatic scaling, and performance isolation |
Horizontally scalable, with support for distributed storage and query processing |
Looking for the most efficient way to get started?
Whether you are looking for cost savings, lower management overhead, or open source, InfluxDB can help.
Snowflake Overview
Snowflake is a cloud-based data warehousing platform that was founded in 2012 and officially launched in 2014. It is designed to enable organizations to efficiently store, process, and analyze large volumes of structured and semi-structured data. Snowflake’s unique architecture separates storage, compute, and cloud services, allowing users to independently scale and optimize each component.
StarRocks Overview
StarRocks is an open source high-performance analytical data warehouse that enables real-time, multi-dimensional, and highly concurrent data analysis. It features an MPP (Massively Parallel Processing) architecture and is equipped with a fully vectorized execution engine and a columnar storage engine that supports real-time updates.
Snowflake for Time Series Data
While Snowflake is not specifically designed for time series data, it can still effectively store, process, and analyze such data due to its scalable and flexible architecture. Snowflake’s columnar storage format, combined with its powerful query engine and support for SQL, makes it a suitable option for time series data analysis.
StarRocks for Time Series Data
StarRocks is primarily focused on data warehousing workloads but can be used for time series data. StarRocks can be used for real time analytics and historical data analysis.
Snowflake Key Concepts
- Virtual Warehouse: A compute resource in Snowflake that processes queries and performs data loading and unloading. Virtual Warehouses can be independently scaled up or down based on demand.
- Micro-Partition: A storage unit in Snowflake that contains a subset of the data in a table. Micro-partitions are automatically optimized for efficient querying.
- Time Travel: A feature in Snowflake that allows users to query historical data at specific points in time or within a specific time range.
- Data Sharing: The ability to securely share data between Snowflake accounts, without the need to copy or transfer the data.
StarRocks Key Concepts
- MPP Architecture: StarRocks utilizes an MPP architecture, which enables parallel processing and distributed execution of queries, allowing for high-performance and scalability.
- Vectorized Execution Engine: StarRocks employs a fully vectorized execution engine that leverages SIMD (Single Instruction, Multiple Data) instructions to process data in batches, resulting in optimized query performance.
- Columnar Storage Engine: The columnar storage engine in StarRocks organizes data by column, which improves query performance by only accessing the necessary columns during query execution.
- Cost-Based Optimizer (CBO): StarRocks includes a fully-customized cost-based optimizer that evaluates different query execution plans and selects the most efficient plan based on estimated costs.
- Materialized View: StarRocks supports intelligent materialized views, which are precomputed summaries of data that accelerate query performance by providing faster access to aggregated data.
Snowflake Architecture
Snowflake’s architecture separates storage, compute, and cloud services, allowing users to scale and optimize each component independently. The platform uses a columnar storage format and supports ANSI SQL for querying and data manipulation. Snowflake is built on top of AWS, Azure, and GCP, providing a fully managed, elastic, and secure data warehouse solution. Key components of the Snowflake architecture include databases, tables, virtual warehouses, and micro-partitions.
StarRocks Architecture
StarRock’s architecture includes a fully vectorized execution engine and a columnar storage engine for efficient data processing and storage. It also incorporates features like a cost-based optimizer and materialized views for optimized query performance. StarRocks supports real-time and batch data ingestion from a variety of sources and enables direct analysis of data stored in data lakes without data migration
Free Time-Series Database Guide
Get a comprehensive review of alternatives and critical requirements for selecting yours.
Snowflake Features
Elasticity
Snowflake’s architecture allows for independent scaling of storage and compute resources, enabling users to quickly adjust to changing workloads and demands.
Fully Managed
Snowflake is a fully managed service, eliminating the need for users to manage infrastructure, software updates, or backups.
Security
Snowflake provides comprehensive security features, including encryption at rest and in transit, multi-factor authentication, and fine-grained access control.
Data Sharing
Snowflake enables secure data sharing between accounts without the need to copy or transfer data.
StarRocks Features
Multi-Dimensional Analysis
StarRocks supports multi-dimensional analysis, enabling users to explore data from different dimensions and perspectives.
High Concurrency
StarRocks is designed to handle high levels of concurrency, allowing multiple users to execute queries simultaneously.
Materialized View
StarRocks supports materialized views, which provide precomputed summaries of data for faster query performance.
Snowflake Use Cases
Data Warehousing
Snowflake provides a scalable, secure, and fully managed data warehousing solution, making it suitable for organizations that need to store, process, and analyze large volumes of structured and semi-structured data.
Data Lake
Snowflake can serve as a data lake for ingesting and storing large volumes of raw, unprocessed data, which can be later transformed and analyzed as needed.
Data Integration and ETL
Snowflake’s support for SQL and various data loading and unloading options makes it a good choice for data integration and ETL
StarRocks Use Cases
Real-Time Analytics
StarRocks is well-suited for real-time analytics scenarios, where users need to analyze data as it arrives, enabling them to make timely and data-driven decisions.
Ad-Hoc Queries
With its high-performance and highly concurrent data analysis capabilities, StarRocks is ideal for ad-hoc querying, allowing users to explore and analyze data interactively.
Data Lake Analytics
StarRocks supports analyzing data directly from data lakes without the need for data migration. This makes it a valuable tool for organizations leveraging data lakes for storage and analysis.
Snowflake Pricing Model
Snowflake offers a pay-as-you-go pricing model, with separate charges for storage and compute resources. Storage is billed on a per-terabyte, per-month basis, while compute resources are billed based on usage, measured in Snowflake Credits. Snowflake offers various editions, including Standard, Enterprise, Business Critical, and Virtual Private Snowflake, each with different features and pricing options. Users can also opt for on-demand or pre-purchased, discounted Snowflake Credits.
StarRocks Pricing Model
StarRocks can be deployed on your own hardware using the open source project. There are also a number of commercial vendors offering managed services to run StarRocks in the cloud.
Get started with InfluxDB for free
InfluxDB Cloud is the fastest way to start storing and analyzing your time series data.