Choosing the right database is a critical choice when building any software application. All databases have different strengths and weaknesses when it comes to performance, so deciding which database has the most benefits and the most minor downsides for your specific use case and data model is an important decision. Below you will find an overview of the key concepts, architecture, features, use cases, and pricing models of AWS Redshift and OpenTSDB so you can quickly see how they compare against each other.

The primary purpose of this article is to compare how AWS Redshift and OpenTSDB perform for workloads involving time series data, not for all possible use cases. Time series data typically presents a unique challenge in terms of database performance. This is due to the high volume of data being written and the query patterns to access that data. This article doesn’t intend to make the case for which database is better; it simply provides an overview of each database so you can make an informed decision.

AWS Redshift vs OpenTSDB Breakdown


 
Database Model

Data warehouse

Time series database

Architecture

AWS Redshift utilizes a columnar storage format for fast querying and supports standard SQL. Redshift uses a distributed, shared-nothing architecture, where data is partitioned across multiple compute nodes. Each node is further divided into slices, with each slice processing a subset of data in parallel. Redshift can be deployed in a single-node or multi-node cluster, with the latter providing better performance for large datasets.

OpenTSDB can be deployed on-premises or in the cloud, with HBase running on a distributed cluster of nodes.

License

Closed source

GNU LGPLv2.1

Use Cases

Business analytics, large-scale data processing, real-time dashboards, data integration, machine learning

Monitoring, observability, IoT, log data storage

Scalability

Supports scaling storage and compute independently, with support for adding or removing nodes as needed

Horizontally scalable across multiple nodes using HBase as its storage backend

Looking for the most efficient way to get started?

Whether you are looking for cost savings, lower management overhead, or open source, InfluxDB can help.

AWS Redshift Overview

Amazon Redshift is a fully managed, petabyte-scale data warehouse service in the cloud. It was launched in 2012 as part of the AWS suite of products. Redshift is designed for analytic workloads and integrates with various data loading and ETL tools, as well as business intelligence and reporting tools. It uses columnar storage to optimize storage costs and improve query performance.

OpenTSDB Overview

OpenTSDB (Open Time Series Database) is an open-source, distributed, and scalable time series database built on top of Apache HBase, a NoSQL database. OpenTSDB was designed to address the growing need for storing and processing large volumes of time series data generated by various sources, such as IoT devices, sensors, and monitoring systems. It was initially developed by StumbleUpon in 2010 and later became an independent project with an active community of contributors.


AWS Redshift for Time Series Data

AWS Redshift can be used for time series data workloads, although Redshift is optimized for more general data warehouse use cases. Users can utilize date and time-based functions to aggregate, filter, and transform time series data. Redshift also offers ‘time-series tables’ which allow data to be stored in tables based on a fixed retention period.

OpenTSDB for Time Series Data

OpenTSDB is designed for time series data storage and analysis, making it an ideal choice for managing large scale time series datasets. Its architecture enables high write and query performance, and it can handle millions of data points per second with minimal resource consumption. OpenTSDB’s flexible querying capabilities allow users to perform complex analysis on time series data efficiently.


AWS Redshift Key Concepts

  • Cluster: A Redshift cluster is a set of nodes, which consists of a leader node and one or more compute nodes. The leader node manages communication with client applications and coordinates query execution among compute nodes.
  • Compute Node: These nodes store data and execute queries in parallel. The number of compute nodes in a cluster affects its storage capacity and query performance.
  • Columnar Storage: Redshift uses a columnar storage format, which stores data in columns rather than rows. This format improves query performance and reduces storage space requirements.
  • Node slices: Compute nodes are divided into slices. Each slice is allocated an equal portion of the node’s memory and disk space, where it processes a portion of the loaded data.

OpenTSDB Key Concepts

  • Data Point: A single measurement in time consisting of a timestamp, metric, value, and associated tags.
  • Metric: A named value that represents a specific aspect of a system, such as CPU usage or temperature.
  • Tags: Key-value pairs associated with data points that provide metadata and help categorize and query the data.


AWS Redshift Architecture

Redshift’s architecture is based on a distributed and shared-nothing architecture. A cluster consists of a leader node and one or more compute nodes. The leader node is responsible for coordinating query execution, while compute nodes store data and execute queries in parallel. Data is stored in a columnar format, which improves query performance and reduces storage space requirements. Redshift uses Massively Parallel Processing (MPP) to distribute and execute queries across multiple nodes, allowing it to scale horizontally and provide high performance for large-scale data warehousing workloads.

OpenTSDB Architecture

OpenTSDB is built on top of Apache HBase, a distributed and scalable NoSQL database, and relies on its architecture for data storage and management. OpenTSDB stores time series data in HBase tables, with data points organized by metric, timestamp, and tags. The database uses a schema-less data model, which allows for flexibility when adding new metrics and tags. The OpenTSDB architecture also supports horizontal scaling by distributing data across multiple HBase nodes.

Free Time-Series Database Guide

Get a comprehensive review of alternatives and critical requirements for selecting yours.

AWS Redshift Features

Scalability

Redshift allows you to scale your cluster up or down by adding or removing compute nodes, enabling you to adjust your storage capacity and query performance based on your needs.

Performance

Redshift’s columnar storage format and MPP architecture enable it to deliver high-performance query execution for large-scale data warehousing workloads.

Security

Redshift provides a range of security features, including encryption at rest and in transit, network isolation using Amazon Virtual Private Cloud (VPC), and integration with AWS Identity and Access Management (IAM) for access control.

OpenTSDB Features

Scalability

OpenTSDB’s distributed architecture allows for horizontal scaling, ensuring that the database can handle growing volumes of time series data.

Data Compression

OpenTSDB uses various compression techniques to reduce the storage footprint of time series data.

Query Language with time series support

OpenTSDB features a flexible query language that supports aggregation, downsampling, filtering, and other operations for analyzing time series data.


AWS Redshift Use Cases

Data Warehousing

Redshift is designed for large-scale data warehousing workloads, providing a scalable and high-performance solution for storing and analyzing structured data.

Business Intelligence and Reporting

Redshift integrates with various BI and reporting tools, enabling organizations to gain insights from their data and make data-driven decisions.

ETL and Data Integration

Redshift supports data loading and extraction, transformation, and loading (ETL) processes, allowing you to integrate data from various sources and prepare it for analysis.

OpenTSDB Use Cases

Monitoring and Alerting

OpenTSDB is well-suited for large-scale monitoring and alerting systems that generate vast amounts of time series data from various sources.

IoT Data Storage

OpenTSDB can store and analyze time series data generated by IoT devices, such as sensors and smart appliances, enabling real-time insights and analytics.

Performance Analysis

OpenTSDB’s flexible querying capabilities make it an ideal choice for analyzing system and application performance metrics over time.


AWS Redshift Pricing Model

Amazon Redshift offers two pricing models: On-Demand and Reserved Instances. With On-Demand pricing, you pay for the capacity you use on an hourly basis, with no long-term commitments. Reserved Instances offer the option to reserve capacity for a one- or three-year term, with a lower hourly rate compared to On-Demand pricing. In addition to these pricing models, you can also choose between different node types, which offer different amounts of storage, memory, and compute resources.

OpenTSDB Pricing Model

OpenTSDB is open-source software, which means it is free to use without any licensing fees. However, the cost of running OpenTSDB depends on the infrastructure required to support the underlying HBase database, such as cloud services or on-premises hardware.