Redis vs TimescaleDB
A detailed comparison
Compare Redis and TimescaleDB for time series and OLAP workloads
Learn About Time Series DatabasesChoosing the right database is a critical choice when building any software application. All databases have different strengths and weaknesses when it comes to performance, so deciding which database has the most benefits and the most minor downsides for your specific use case and data model is an important decision. Below you will find an overview of the key concepts, architecture, features, use cases, and pricing models of Redis and TimescaleDB so you can quickly see how they compare against each other.
The primary purpose of this article is to compare how Redis and TimescaleDB perform for workloads involving time series data, not for all possible use cases. Time series data typically presents a unique challenge in terms of database performance. This is due to the high volume of data being written and the query patterns to access that data. This article doesn’t intend to make the case for which database is better; it simply provides an overview of each database so you can make an informed decision.
Redis vs TimescaleDB Breakdown
Database Model | In-memory database |
Time Series Database |
Architecture | Redis can be deployed on-premises, in the cloud, or as a managed service |
TimescaleDB is built on top of PostgreSQL and inherits its architecture. It extends PostgreSQL with time-series-specific optimizations and functions, allowing it to manage time series data efficiently. It can be deployed as a single node, in a multi-node setup, or in the cloud as a managed service. |
License | BSD 3 |
Timescale License (for TimescaleDB Community Edition); Apache 2.0 (for core PostgreSQL) |
Use Cases | Caching, message brokering, real-time analytics, session storage, geospatial data processing |
Monitoring, observability, IoT, real-time analytics, financial market data |
Scalability | Horizontally scalable via partitioning and clustering, supports data replication |
Horizontally scalable through native support for partitioning, replication, and sharding. Offers multi-node capabilities for distributing data and queries across nodes. |
Looking for the most efficient way to get started?
Whether you are looking for cost savings, lower management overhead, or open source, InfluxDB can help.
Redis Overview
Redis, which stands for Remote Dictionary Server, is an open-source, in-memory data structure store that can be used as a database, cache, and message broker. It was created by Salvatore Sanfilippo in 2009 and has since gained significant popularity due to its high performance and flexibility. Redis supports various data structures, such as strings, hashes, lists, sets, sorted sets with range queries, bitmaps, hyperloglogs, and geospatial indexes with radius queries.
TimescaleDB Overview
TimescaleDB is an open source time series database built on top of PostgreSQL. It was created to address the challenges of managing time series data, such as scalability, query performance, and data retention policies. TimescaleDB was first released in 2017 and has since become a popular choice for storing and analyzing time series data due to its PostgreSQL compatibility, performance optimizations, and flexible data retention policies.
Redis for Time Series Data
Redis has a dedicated module for working with time series data called RedisTimeSeries. RedisTimeSeries offers functionality like downsampling, data retention policies, and specialized queries for time series data in Redis. Being an in-memory database, Redis will be very fast for reading and writing time series data, but due to the cost of RAM compared to disk using Redis could become expensive depending on the size of your dataset. If your use case doesn’t require extremely fast response times, you could save money by going with a more traditional time series database.
TimescaleDB for Time Series Data
TimescaleDB is specifically designed for time series data, making it a natural choice for storing and querying such data. It provides several advantages for time series data management like horizontal scalability, columnar storage, and retention policy support. However, TimescaleDB may not be the best choice for all time series use cases. One example would be if an application requires very high write throughput or real-time analytics, other specialized time series databases like InfluxDB may be more suitable.
Redis Key Concepts
- In-memory store: Redis stores data in memory, which allows for faster data access and manipulation compared to disk-based databases .
- Data structures: Redis supports a wide range of data structures, including strings, hashes, lists, sets, and more, which provide flexibility in how data is modeled and stored.
- Persistence: Redis offers optional data persistence, allowing data to be periodically saved to disk or written to a log for durability.
- Pub/Sub: Redis provides a publish/subscribe messaging system, enabling real-time communication between clients without the need for a centralized message broker.
TimescaleDB Key Concepts
- Hypertable: A hypertable is a distributed table that is partitioned by time and possibly other dimensions, such as device ID or location. It is the primary abstraction for storing time series data in TimescaleDB and is designed to scale horizontally across multiple nodes.
- Chunk: A chunk is a partition of a hypertable, containing a subset of the hypertable’s data. Chunks are created automatically by TimescaleDB based on a specified time interval and can be individually compressed, indexed, and backed up for better performance and data management.
- Distributed Hypertables: For large-scale deployments, TimescaleDB supports distributed hypertables, which partition data across multiple nodes for improved query performance and fault tolerance.
Redis Architecture
Redis is a NoSQL database that uses a key-value data model, where each key is associated with a value stored as one of Redis’ supported data structures. The database is single-threaded, which simplifies its internal architecture and reduces contention. Redis can be deployed as a standalone server, a cluster, or a master-replica setup for scalability and high availability. The Redis Cluster mode automatically shards data across multiple nodes, providing data partitioning and fault tolerance.
TimescaleDB Architecture
TimescaleDB is an extension built on PostgreSQL, inheriting its relational data model and SQL support. However, TimescaleDB extends PostgreSQL with custom data structures and optimizations for time series data, such as hypertables and chunks.
Free Time-Series Database Guide
Get a comprehensive review of alternatives and critical requirements for selecting yours.
Redis Features
Atomicity
Redis supports atomic operations on complex data types, allowing developers to perform powerful operations without worrying about race conditions or other concurrent processing issues.
Broad data structure support
Redis supports a range of data structures such as lists, sets, sorted sets, hashes, bitmaps, hyperloglog, and geospatial indexes. This flexibility allows developers to use Redis for a wide variety of tasks by using data structures that are optimized for their data in terms of performance characteristics.
Pub/Sub messaging
Redis provides a publish/subscribe messaging system for real-time communication between clients.
Lua Scripting
Developers can run Lua scripts in the Redis server, enabling complex operations to be executed atomically in the server itself, reducing network round trips.
TimescaleDB Features
Partitioning
TimescaleDB automatically partitions time series data tables using hypertables and chunks, which simplifies data management and improves query performance.
Time series focused SQL functions
TimescaleDB provides several specialized SQL functions and operators for time series data application scenarios, such as time_bucket, first, and last, which simplify querying and aggregating time series data.
Query optimization
As mentioned earlier, TimescaleDB extends PostgreSQL’s query planner for writing and querying time series data, including optimizations like time-based indexing and chunk pruning.
Redis Use Cases
Caching
Redis is often used as a cache to store frequently accessed data and reduce the load on other databases or services, improving application performance and reducing latency.
Task queues
Redis can be used to implement task queues, which are useful for managing tasks that take longer to process and should be executed asynchronously. This is particularly common in web applications, where background tasks can be processed independently of the request/response cycle
Real-time analysis and machine learning
Redis’ high performance and low-latency data access make it suitable for real-time analysis and machine learning applications, such as processing streaming data, media streaming, and handling time-series data. This can be achieved using Redis’ data structures and capabilities like sorted sets, timestamps, and pub/sub messaging.
TimescaleDB Use Cases
Monitoring and metrics
TimescaleDB is well-suited for storing and analyzing monitoring and metrics data, such as server performance metrics, application logs, and sensor data. Its hypertable structure and query optimizations make it easy to store, query, and visualize large volumes of time series data.
IoT data storage
TimescaleDB can be used to store and analyze IoT data, such as sensor readings and device status information. Its support for automatic partitioning and specialized SQL interfaces simplifies the management and querying of large-scale IoT datasets.
Financial data
TimescaleDB is suitable for storing and analyzing financial data, such as stock prices, exchange rates, and trading volumes. Its query optimizations and specialized SQL functions make it easy to perform time-based aggregations and analyze trends in financial data.
Redis Pricing Model
Redis is open-source software, which means it can be deployed and used freely on your own infrastructure. However, there are also managed Redis services available, such as Redis Enterprise which offer additional features, support, and ease of deployment. Pricing for these services typically depends on factors like the size of the instance, data storage, and data transfer.
TimescaleDB Pricing Model
TimescaleDB is available in two editions: TimescaleDB Open Source and TimescaleDB Cloud. The open-source edition is free to use and can be self-hosted, while the cloud edition is a managed service with a pay-as-you-go pricing model based on storage, compute, and data transfer usage. TimescaleDB Cloud offers various pricing tiers with different levels of resources and features, such as continuous backups and high availability.
Get started with InfluxDB for free
InfluxDB Cloud is the fastest way to start storing and analyzing your time series data.