Choosing the right database is a critical choice when building any software application. All databases have different strengths and weaknesses when it comes to performance, so deciding which database has the most benefits and the most minor downsides for your specific use case and data model is an important decision. Below you will find an overview of the key concepts, architecture, features, use cases, and pricing models of Redis and RRDtool so you can quickly see how they compare against each other.

The primary purpose of this article is to compare how Redis and RRDtool perform for workloads involving time series data, not for all possible use cases. Time series data typically presents a unique challenge in terms of database performance. This is due to the high volume of data being written and the query patterns to access that data. This article doesn’t intend to make the case for which database is better; it simply provides an overview of each database so you can make an informed decision.

Redis vs RRDtool Breakdown


 
Database Model

In-memory database

Time series database

Architecture

Redis can be deployed on-premises, in the cloud, or as a managed service

RRDtool is a single-node, non-distributed database generally deployed on a single machine

License

BSD 3

GNU GPLv2

Use Cases

Caching, message brokering, real-time analytics, session storage, geospatial data processing

Monitoring, observability, Network performance tracking, System metrics, Log data storage

Scalability

Horizontally scalable via partitioning and clustering, supports data replication

Limited scalability- more suitable for small to medium-sized datasets

Looking for the most efficient way to get started?

Whether you are looking for cost savings, lower management overhead, or open source, InfluxDB can help.

Redis Overview

Redis, which stands for Remote Dictionary Server, is an open-source, in-memory data structure store that can be used as a database, cache, and message broker. It was created by Salvatore Sanfilippo in 2009 and has since gained significant popularity due to its high performance and flexibility. Redis supports various data structures, such as strings, hashes, lists, sets, sorted sets with range queries, bitmaps, hyperloglogs, and geospatial indexes with radius queries.

RRDtool Overview

RRDtool, short for Round-Robin Database Tool, is an open-source, high-performance data logging and graphing system designed to handle time series data. Created by Tobias Oetiker in 1999, RRDtool is specifically built for storing and visualizing time-series data, such as network bandwidth, temperatures, or CPU load. Its primary feature is the efficient storage of data points, using a fixed-size database that automatically aggregates and archives older data points, ensuring that the database size remains constant over time.


Redis for Time Series Data

Redis has a dedicated module for working with time series data called RedisTimeSeries. RedisTimeSeries offers functionality like downsampling, data retention policies, and specialized queries for time series data in Redis. Being an in-memory database, Redis will be very fast for reading and writing time series data, but due to the cost of RAM compared to disk using Redis could become expensive depending on the size of your dataset. If your use case doesn’t require extremely fast response times, you could save money by going with a more traditional time series database.

RRDtool for Time Series Data

RRDtool was created for time series data storage and visualization, making it a great fit for applications that require efficient handling of this type of data. Its round-robin database structure ensures constant storage space usage while providing automatic data aggregation and archiving. However, RRDtool may not be suitable for applications that require complex queries or relational data storage, as its focus is primarily on time series data.


Redis Key Concepts

  • In-memory store: Redis stores data in memory, which allows for faster data access and manipulation compared to disk-based databases .
  • Data structures: Redis supports a wide range of data structures, including strings, hashes, lists, sets, and more, which provide flexibility in how data is modeled and stored.
  • Persistence: Redis offers optional data persistence, allowing data to be periodically saved to disk or written to a log for durability.
  • Pub/Sub: Redis provides a publish/subscribe messaging system, enabling real-time communication between clients without the need for a centralized message broker.

RRDtool Key Concepts

  • Round-robin database: A fixed-size database that stores time-series data using a circular buffer, overwriting older data as new data is added.
  • RRD file: A single file that contains all the configuration and data for an RRDtool database.
  • Consolidation function: A function that aggregates multiple data points into a single data point, such as AVERAGE, MIN, MAX, or LAST.


Redis Architecture

Redis is a NoSQL database that uses a key-value data model, where each key is associated with a value stored as one of Redis’ supported data structures. The database is single-threaded, which simplifies its internal architecture and reduces contention. Redis can be deployed as a standalone server, a cluster, or a master-replica setup for scalability and high availability. The Redis Cluster mode automatically shards data across multiple nodes, providing data partitioning and fault tolerance.

RRDtool Architecture

RRDtool is a specialized time series database that does not use SQL or a traditional relational data model. Instead, it employs a round-robin database structure, with data points stored in a fixed-size, circular buffer. RRDtool is a command-line tool that can be used to create and update RRD files, as well as generate graphs and reports from the stored data. It can be integrated with various scripting languages, such as Perl, Python, and Ruby, through available bindings.

Free Time-Series Database Guide

Get a comprehensive review of alternatives and critical requirements for selecting yours.

Redis Features

Atomicity

Redis supports atomic operations on complex data types, allowing developers to perform powerful operations without worrying about race conditions or other concurrent processing issues.

Broad data structure support

Redis supports a range of data structures such as lists, sets, sorted sets, hashes, bitmaps, hyperloglog, and geospatial indexes. This flexibility allows developers to use Redis for a wide variety of tasks by using data structures that are optimized for their data in terms of performance characteristics.

Pub/Sub messaging

Redis provides a publish/subscribe messaging system for real-time communication between clients.

Lua Scripting

Developers can run Lua scripts in the Redis server, enabling complex operations to be executed atomically in the server itself, reducing network round trips.

RRDtool Features

Efficient Data Storage

RRDtool’s round-robin database structure ensures constant storage space usage, automatically aggregating and archiving older data points.

Graphing

RRDtool provides powerful graphing capabilities, allowing users to generate customizable graphs and reports from the stored time series data.

Cross-Platform Support

RRDtool is available on various platforms, including Linux, Unix, macOS, and Windows.


Redis Use Cases

Caching

Redis is often used as a cache to store frequently accessed data and reduce the load on other databases or services, improving application performance and reducing latency.

Task queues

Redis can be used to implement task queues, which are useful for managing tasks that take longer to process and should be executed asynchronously. This is particularly common in web applications, where background tasks can be processed independently of the request/response cycle

Real-time analysis and machine learning

Redis’ high performance and low-latency data access make it suitable for real-time analysis and machine learning applications, such as processing streaming data, media streaming, and handling time-series data. This can be achieved using Redis’ data structures and capabilities like sorted sets, timestamps, and pub/sub messaging.

RRDtool Use Cases

Network Monitoring

RRDtool is often used in network monitoring applications to store and visualize metrics such as bandwidth usage, latency, and packet loss.

Environmental Monitoring

RRDtool can be used to track and visualize environmental data, such as temperature, humidity, and air pressure, over time.

System Performance Monitoring

RRDtool is suitable for storing and displaying system performance metrics, like CPU usage, memory consumption, and disk I/O, for server and infrastructure monitoring.


Redis Pricing Model

Redis is open-source software, which means it can be deployed and used freely on your own infrastructure. However, there are also managed Redis services available, such as Redis Enterprise which offer additional features, support, and ease of deployment. Pricing for these services typically depends on factors like the size of the instance, data storage, and data transfer.

RRDtool Pricing Model

RRDtool is an open-source software, freely available for use under the GNU General Public License. Users can download, use, and modify the software at no cost. There are no commercial licensing options or paid support services offered directly by the project.