Choosing the right database is a critical choice when building any software application. All databases have different strengths and weaknesses when it comes to performance, so deciding which database has the most benefits and the most minor downsides for your specific use case and data model is an important decision. Below you will find an overview of the key concepts, architecture, features, use cases, and pricing models of QuestDB and VictoriaMetrics so you can quickly see how they compare against each other.

The primary purpose of this article is to compare how QuestDB and VictoriaMetrics perform for workloads involving time series data, not for all possible use cases. Time series data typically presents a unique challenge in terms of database performance. This is due to the high volume of data being written and the query patterns to access that data. This article doesn’t intend to make the case for which database is better; it simply provides an overview of each database so you can make an informed decision.

QuestDB vs VictoriaMetrics Breakdown


 
Database Model

Time series database

Time series database

Architecture

QuestDB is designed for horizontal scaling, enabling you to distribute data and queries across multiple nodes for increased performance and availability. It can be deployed on-premises, in the cloud, or as a hybrid solution, depending on your infrastructure needs and preferences.

VictoriaMetrics can be deployed as a single-node instance for small-scale applications or as a clustered setup for large-scale applications, offering horizontal scalability and replication.

License

Apache 2.0

Apache 2.0

Use Cases

Monitoring, observability, IoT, Real-time analytics, Financial services, High-frequency trading

Monitoring, observability, IoT, real-time analytics, DevOps, application performance monitoring

Scalability

High-performance with support for horizontal scaling and multi-threading

Horizontally scalable, supports clustering and replication for high availability and performance

Looking for the most efficient way to get started?

Whether you are looking for cost savings, lower management overhead, or open source, InfluxDB can help.

QuestDB Overview

QuestDB is an open-source relational column-oriented database designed specifically for time series and event data. It combines high-performance ingestion capabilities with SQL analytics, making it a powerful tool for managing and analyzing large volumes of time-based data. QuestDB addresses the challenges of handling high throughput and provides a simple way to analyze ingested data through SQL queries. It is well-suited for use cases such as financial market data and application metrics.

VictoriaMetrics Overview

VictoriaMetrics is an open source time series database developed by the company VictoriaMetrics. The database aims to assist individuals and organizations in addressing their big data challenges by providing state-of-the-art monitoring and observability solutions. VictoriaMetrics is designed to be a fast, cost-effective, and scalable monitoring solution and time series database.


QuestDB for Time Series Data

QuestDB excels in managing and analyzing time series data. With its high-performance ingestion capabilities, it can handle high data throughput, making it suitable for real-time data ingestion scenarios. QuestDB’s SQL extensions for time series enable users to perform real-time analytics and gain valuable insights from their time-stamped data. Whether it’s financial market data or application metrics, QuestDB simplifies the process of ingesting and analyzing time series data through its fast SQL queries and operational simplicity.

VictoriaMetrics for Time Series Data

VictoriaMetrics is designed for time series data, making it a solid choice for applications that involve the storage and analysis of time-stamped data. It provides high-performance storage and retrieval capabilities, enabling efficient handling of large volumes of time series data.


QuestDB Key Concepts

  • Time Series: QuestDB focuses on time series data, which represents data points indexed by time. It is optimized for storing and processing time-stamped data efficiently.
  • Column-Oriented: QuestDB employs a column-oriented storage format, where data is organized and stored column by column rather than row by row. This format enables efficient compression and faster query performance.
  • SQL Extensions: QuestDB extends the SQL language with functionalities specifically tailored for time series data. These extensions facilitate real-time analytics and allow users to leverage familiar SQL constructs for querying time-based data.

VictoriaMetrics Key Concepts

  • Time Series: VictoriaMetrics stores data in the form of time series, which are sequences of data points indexed by time.
  • Metric: A metric represents a specific measurement or observation that is tracked over time.
  • Tag: Tags are key-value pairs associated with a time series and are used for filtering and grouping data.
  • Field: Fields contain the actual data values associated with a time series.
  • Query Language: VictoriaMetrics supports its own query language, which allows users to retrieve and analyze time series data based on specific criteria.


QuestDB Architecture

QuestDB follows a hybrid architecture that combines features of columnar and row-based databases. It leverages a column-oriented storage format for efficient compression and query performance while retaining the ability to handle relational data with SQL capabilities. QuestDB supports both SQL and NoSQL-like functionalities, providing users with flexibility in their data modeling and querying approaches. The database consists of multiple components, including the ingestion engine, storage engine, and query engine, working together to ensure high-performance data ingestion and retrieval.

VictoriaMetrics Architecture

VictoriaMetrics is available in two forms: Single-server-VictoriaMetrics and VictoriaMetrics Cluster. The Single-server-VictoriaMetrics is an all-in-one binary that is easy to use and maintain. It vertically scales well and can handle millions of metrics per second. On the other hand, VictoriaMetrics Cluster consists of components that allow for building horizontally scalable clusters, enabling high availability and scalability in demanding environments. The architecture of VictoriaMetrics enables users to choose the deployment option that best suits their needs and scale their database infrastructure as required.

Free Time-Series Database Guide

Get a comprehensive review of alternatives and critical requirements for selecting yours.

QuestDB Features

High-Performance Ingestion

QuestDB is optimized for high throughput ingestion, allowing users to efficiently ingest large volumes of time series data at high speeds.

Fast SQL Queries

QuestDB provides fast SQL queries for analyzing time series data. It extends the SQL language with time series-specific functionalities to assist with real-time analytics.

Operational Simplicity

QuestDB aims to provide a user-friendly experience with operational simplicity. It supports schema-agnostic ingestion using popular protocols such as InfluxDB line protocol and PostgreSQL wire protocol. Additionally, a REST API is available for bulk imports and exports, simplifying data management tasks.

VictoriaMetrics Features

High performance

VictoriaMetrics is optimized for high-performance storage and retrieval of time series data. It can efficiently handle millions of metrics per second and offers fast query execution for real-time analysis.

Scalability

The architecture of VictoriaMetrics allows for both vertical and horizontal scalability, enabling users to scale their monitoring and time series database infrastructure as their data volume and demand grow.

Cost-effectiveness

VictoriaMetrics provides a cost-effective solution for managing time series data. Its efficient storage and query capabilities contribute to minimizing operational costs while maintaining high performance.


QuestDB Use Cases

Financial Market Data

QuestDB is well-suited for managing and analyzing financial market data. Its high-performance ingestion and fast SQL queries enable efficient processing and analysis of large volumes of market data in real time.

Application Metrics

QuestDB can be used for collecting and analyzing application metrics. Its ability to handle high data throughput and provide real-time analytics capabilities makes it suitable for monitoring and analyzing performance metrics, logs, and other application-related data.

IoT Data Analysis

QuestDB’s high-performance ingestion and time series analytics capabilities make it a valuable tool for analyzing IoT sensor data.

VictoriaMetrics Use Cases

Monitoring and Observability

VictoriaMetrics is widely used for monitoring and observability purposes, allowing organizations to collect, store, and analyze metrics and performance data from various systems and applications. It provides the necessary tools and capabilities to track and visualize key performance indicators, troubleshoot issues, and gain insights into system behavior.

IoT Data Management

VictoriaMetrics is suitable for handling large volumes of time series data generated by IoT devices. It can efficiently store and process sensor data, enabling real-time monitoring and analysis of IoT ecosystems. VictoriaMetrics allows for tracking and analyzing data from factories, manufacturing plants, satellites, and other IoT devices.

Capacity Planning

VictoriaMetrics enables retrospective analysis and forecasting of metrics for capacity planning purposes. It allows organizations to analyze historical data, identify patterns and trends, and make informed decisions about resource allocation and future capacity requirements.


QuestDB Pricing Model

QuestDB is an open-source project released under the Apache 2 License. It is freely available for usage and does not require any licensing fees. Users can access the source code on GitHub and deploy QuestDB on their own infrastructure without incurring direct costs. QuestDB also offers a managed cloud service.

VictoriaMetrics Pricing Model

VictoriaMetrics is an open source project, which means it is available for free usage and doesn’t require any licensing fees. Users can download the binary releases, Docker images, or source code to set up and deploy VictoriaMetrics without incurring any direct costs. VictoriaMetrics also has paid offerings for on-prem Enterprise products and managed VictoriaMetrics instances.