QuestDB vs TimescaleDB
A detailed comparison
Compare QuestDB and TimescaleDB for time series and OLAP workloads
Learn About Time Series DatabasesChoosing the right database is a critical choice when building any software application. All databases have different strengths and weaknesses when it comes to performance, so deciding which database has the most benefits and the most minor downsides for your specific use case and data model is an important decision. Below you will find an overview of the key concepts, architecture, features, use cases, and pricing models of QuestDB and TimescaleDB so you can quickly see how they compare against each other.
The primary purpose of this article is to compare how QuestDB and TimescaleDB perform for workloads involving time series data, not for all possible use cases. Time series data typically presents a unique challenge in terms of database performance. This is due to the high volume of data being written and the query patterns to access that data. This article doesn’t intend to make the case for which database is better; it simply provides an overview of each database so you can make an informed decision.
QuestDB vs TimescaleDB Breakdown
Database Model | Time series database |
Time Series Database |
Architecture | QuestDB is designed for horizontal scaling, enabling you to distribute data and queries across multiple nodes for increased performance and availability. It can be deployed on-premises, in the cloud, or as a hybrid solution, depending on your infrastructure needs and preferences. |
TimescaleDB is built on top of PostgreSQL and inherits its architecture. It extends PostgreSQL with time-series-specific optimizations and functions, allowing it to manage time series data efficiently. It can be deployed as a single node, in a multi-node setup, or in the cloud as a managed service. |
License | Apache 2.0 |
Timescale License (for TimescaleDB Community Edition); Apache 2.0 (for core PostgreSQL) |
Use Cases | Monitoring, observability, IoT, Real-time analytics, Financial services, High-frequency trading |
Monitoring, observability, IoT, real-time analytics, financial market data |
Scalability | High-performance with support for horizontal scaling and multi-threading |
Horizontally scalable through native support for partitioning, replication, and sharding. Offers multi-node capabilities for distributing data and queries across nodes. |
Looking for the most efficient way to get started?
Whether you are looking for cost savings, lower management overhead, or open source, InfluxDB can help.
QuestDB Overview
QuestDB is an open-source relational column-oriented database designed specifically for time series and event data. It combines high-performance ingestion capabilities with SQL analytics, making it a powerful tool for managing and analyzing large volumes of time-based data. QuestDB addresses the challenges of handling high throughput and provides a simple way to analyze ingested data through SQL queries. It is well-suited for use cases such as financial market data and application metrics.
TimescaleDB Overview
TimescaleDB is an open source time series database built on top of PostgreSQL. It was created to address the challenges of managing time series data, such as scalability, query performance, and data retention policies. TimescaleDB was first released in 2017 and has since become a popular choice for storing and analyzing time series data due to its PostgreSQL compatibility, performance optimizations, and flexible data retention policies.
QuestDB for Time Series Data
QuestDB excels in managing and analyzing time series data. With its high-performance ingestion capabilities, it can handle high data throughput, making it suitable for real-time data ingestion scenarios. QuestDB’s SQL extensions for time series enable users to perform real-time analytics and gain valuable insights from their time-stamped data. Whether it’s financial market data or application metrics, QuestDB simplifies the process of ingesting and analyzing time series data through its fast SQL queries and operational simplicity.
TimescaleDB for Time Series Data
TimescaleDB is specifically designed for time series data, making it a natural choice for storing and querying such data. It provides several advantages for time series data management like horizontal scalability, columnar storage, and retention policy support. However, TimescaleDB may not be the best choice for all time series use cases. One example would be if an application requires very high write throughput or real-time analytics, other specialized time series databases like InfluxDB may be more suitable.
QuestDB Key Concepts
- Time Series: QuestDB focuses on time series data, which represents data points indexed by time. It is optimized for storing and processing time-stamped data efficiently.
- Column-Oriented: QuestDB employs a column-oriented storage format, where data is organized and stored column by column rather than row by row. This format enables efficient compression and faster query performance.
- SQL Extensions: QuestDB extends the SQL language with functionalities specifically tailored for time series data. These extensions facilitate real-time analytics and allow users to leverage familiar SQL constructs for querying time-based data.
TimescaleDB Key Concepts
- Hypertable: A hypertable is a distributed table that is partitioned by time and possibly other dimensions, such as device ID or location. It is the primary abstraction for storing time series data in TimescaleDB and is designed to scale horizontally across multiple nodes.
- Chunk: A chunk is a partition of a hypertable, containing a subset of the hypertable’s data. Chunks are created automatically by TimescaleDB based on a specified time interval and can be individually compressed, indexed, and backed up for better performance and data management.
- Distributed Hypertables: For large-scale deployments, TimescaleDB supports distributed hypertables, which partition data across multiple nodes for improved query performance and fault tolerance.
QuestDB Architecture
QuestDB follows a hybrid architecture that combines features of columnar and row-based databases. It leverages a column-oriented storage format for efficient compression and query performance while retaining the ability to handle relational data with SQL capabilities. QuestDB supports both SQL and NoSQL-like functionalities, providing users with flexibility in their data modeling and querying approaches. The database consists of multiple components, including the ingestion engine, storage engine, and query engine, working together to ensure high-performance data ingestion and retrieval.
TimescaleDB Architecture
TimescaleDB is an extension built on PostgreSQL, inheriting its relational data model and SQL support. However, TimescaleDB extends PostgreSQL with custom data structures and optimizations for time series data, such as hypertables and chunks.
Free Time-Series Database Guide
Get a comprehensive review of alternatives and critical requirements for selecting yours.
QuestDB Features
High-Performance Ingestion
QuestDB is optimized for high throughput ingestion, allowing users to efficiently ingest large volumes of time series data at high speeds.
Fast SQL Queries
QuestDB provides fast SQL queries for analyzing time series data. It extends the SQL language with time series-specific functionalities to assist with real-time analytics.
Operational Simplicity
QuestDB aims to provide a user-friendly experience with operational simplicity. It supports schema-agnostic ingestion using popular protocols such as InfluxDB line protocol and PostgreSQL wire protocol. Additionally, a REST API is available for bulk imports and exports, simplifying data management tasks.
TimescaleDB Features
Partitioning
TimescaleDB automatically partitions time series data tables using hypertables and chunks, which simplifies data management and improves query performance.
Time series focused SQL functions
TimescaleDB provides several specialized SQL functions and operators for time series data application scenarios, such as time_bucket, first, and last, which simplify querying and aggregating time series data.
Query optimization
As mentioned earlier, TimescaleDB extends PostgreSQL’s query planner for writing and querying time series data, including optimizations like time-based indexing and chunk pruning.
QuestDB Use Cases
Financial Market Data
QuestDB is well-suited for managing and analyzing financial market data. Its high-performance ingestion and fast SQL queries enable efficient processing and analysis of large volumes of market data in real time.
Application Metrics
QuestDB can be used for collecting and analyzing application metrics. Its ability to handle high data throughput and provide real-time analytics capabilities makes it suitable for monitoring and analyzing performance metrics, logs, and other application-related data.
IoT Data Analysis
QuestDB’s high-performance ingestion and time series analytics capabilities make it a valuable tool for analyzing IoT sensor data.
TimescaleDB Use Cases
Monitoring and metrics
TimescaleDB is well-suited for storing and analyzing monitoring and metrics data, such as server performance metrics, application logs, and sensor data. Its hypertable structure and query optimizations make it easy to store, query, and visualize large volumes of time series data.
IoT data storage
TimescaleDB can be used to store and analyze IoT data, such as sensor readings and device status information. Its support for automatic partitioning and specialized SQL interfaces simplifies the management and querying of large-scale IoT datasets.
Financial data
TimescaleDB is suitable for storing and analyzing financial data, such as stock prices, exchange rates, and trading volumes. Its query optimizations and specialized SQL functions make it easy to perform time-based aggregations and analyze trends in financial data.
QuestDB Pricing Model
QuestDB is an open-source project released under the Apache 2 License. It is freely available for usage and does not require any licensing fees. Users can access the source code on GitHub and deploy QuestDB on their own infrastructure without incurring direct costs. QuestDB also offers a managed cloud service.
TimescaleDB Pricing Model
TimescaleDB is available in two editions: TimescaleDB Open Source and TimescaleDB Cloud. The open-source edition is free to use and can be self-hosted, while the cloud edition is a managed service with a pay-as-you-go pricing model based on storage, compute, and data transfer usage. TimescaleDB Cloud offers various pricing tiers with different levels of resources and features, such as continuous backups and high availability.
Get started with InfluxDB for free
InfluxDB Cloud is the fastest way to start storing and analyzing your time series data.