PostgreSQL vs AWS Redshift
A detailed comparison
Compare PostgreSQL and AWS Redshift for time series and OLAP workloads
Learn About Time Series DatabasesChoosing the right database is a critical choice when building any software application. All databases have different strengths and weaknesses when it comes to performance, so deciding which database has the most benefits and the most minor downsides for your specific use case and data model is an important decision. Below you will find an overview of the key concepts, architecture, features, use cases, and pricing models of PostgreSQL and AWS Redshift so you can quickly see how they compare against each other.
The primary purpose of this article is to compare how PostgreSQL and AWS Redshift perform for workloads involving time series data, not for all possible use cases. Time series data typically presents a unique challenge in terms of database performance. This is due to the high volume of data being written and the query patterns to access that data. This article doesn’t intend to make the case for which database is better; it simply provides an overview of each database so you can make an informed decision.
PostgreSQL vs AWS Redshift Breakdown
Database Model | Relational database |
Data warehouse |
Architecture | PostgreSQL can be deployed on various platforms, such as on-premises, in virtual machines, or as a managed cloud service like Amazon RDS, Google Cloud SQL, or Azure Database for PostgreSQL. |
AWS Redshift utilizes a columnar storage format for fast querying and supports standard SQL. Redshift uses a distributed, shared-nothing architecture, where data is partitioned across multiple compute nodes. Each node is further divided into slices, with each slice processing a subset of data in parallel. Redshift can be deployed in a single-node or multi-node cluster, with the latter providing better performance for large datasets. |
License | PostgreSQL license (similar to MIT or BSD) |
Closed source |
Use Cases | Web applications, geospatial data, business intelligence, analytics, content management systems, financial applications, scientific applications |
Business analytics, large-scale data processing, real-time dashboards, data integration, machine learning |
Scalability | Supports vertical scaling, horizontal scaling through partitioning, sharding, and replication using available tools |
Supports scaling storage and compute independently, with support for adding or removing nodes as needed |
Looking for the most efficient way to get started?
Whether you are looking for cost savings, lower management overhead, or open source, InfluxDB can help.
PostgreSQL Overview
PostgreSQL, also known as Postgres, is an open-source relational database management system that was first released in 1996. It has a long history of being a robust, reliable, and feature-rich database system, widely used in various industries and applications. PostgreSQL is known for its adherence to the SQL standard and extensibility, which allows users to define their own data types, operators, and functions. It is developed and maintained by a dedicated community of contributors and is available on multiple platforms, including Windows, Linux, and macOS.
AWS Redshift Overview
Amazon Redshift is a fully managed, petabyte-scale data warehouse service in the cloud. It was launched in 2012 as part of the AWS suite of products. Redshift is designed for analytic workloads and integrates with various data loading and ETL tools, as well as business intelligence and reporting tools. It uses columnar storage to optimize storage costs and improve query performance.
PostgreSQL for Time Series Data
PostgreSQL can be used for time series data storage and analysis, although it was not specifically designed for this use case. With its rich set of data types, indexing options, and window function support, PostgreSQL can handle time series data. However, Postgres will not be as optimized for time series data as specialized time series databases when it comes to things like data compression, write throughput, and query speed. PostgreSQL also lacks a number of features that are useful for working with time series data like downsampling, retention policies, and custom SQL functions for time series data analysis.
AWS Redshift for Time Series Data
AWS Redshift can be used for time series data workloads, although Redshift is optimized for more general data warehouse use cases. Users can utilize date and time-based functions to aggregate, filter, and transform time series data. Redshift also offers ‘time-series tables’ which allow data to be stored in tables based on a fixed retention period.
PostgreSQL Key Concepts
- MVCC: Multi-Version Concurrency Control is a technique used by PostgreSQL to allow multiple transactions to be executed concurrently without conflicts or locking.
- WAL: Write-Ahead Logging is a method used to ensure data durability by logging changes to a journal before they are written to the main data files.
- TOAST: The Oversized-Attribute Storage Technique is a mechanism for storing large data values in a separate table to reduce the main table’s disk space consumption.
AWS Redshift Key Concepts
- Cluster: A Redshift cluster is a set of nodes, which consists of a leader node and one or more compute nodes. The leader node manages communication with client applications and coordinates query execution among compute nodes.
- Compute Node: These nodes store data and execute queries in parallel. The number of compute nodes in a cluster affects its storage capacity and query performance.
- Columnar Storage: Redshift uses a columnar storage format, which stores data in columns rather than rows. This format improves query performance and reduces storage space requirements.
- Node slices: Compute nodes are divided into slices. Each slice is allocated an equal portion of the node’s memory and disk space, where it processes a portion of the loaded data.
PostgreSQL Architecture
PostgreSQL is a client-server relational database system that uses the SQL language for querying and manipulation. It employs a process-based architecture, with each connection to the database being handled by a separate server process. This architecture provides isolation between different users and sessions. PostgreSQL supports ACID transactions and uses a combination of MVCC, WAL, and other techniques to ensure data consistency, durability, and performance. It also supports various extensions and external modules to enhance its functionality.
AWS Redshift Architecture
Redshift’s architecture is based on a distributed and shared-nothing architecture. A cluster consists of a leader node and one or more compute nodes. The leader node is responsible for coordinating query execution, while compute nodes store data and execute queries in parallel. Data is stored in a columnar format, which improves query performance and reduces storage space requirements. Redshift uses Massively Parallel Processing (MPP) to distribute and execute queries across multiple nodes, allowing it to scale horizontally and provide high performance for large-scale data warehousing workloads.
Free Time-Series Database Guide
Get a comprehensive review of alternatives and critical requirements for selecting yours.
PostgreSQL Features
Extensibility
PostgreSQL allows users to define custom data types, operators, and functions, making it highly adaptable to specific application requirements.
Full-text search
PostgreSQL has built-in support for full-text search, enabling users to perform complex text-based queries and analyses.
Geospatial support
With the PostGIS extension, PostgreSQL can store and manipulate geospatial data, making it suitable for GIS applications.
AWS Redshift Features
Scalability
Redshift allows you to scale your cluster up or down by adding or removing compute nodes, enabling you to adjust your storage capacity and query performance based on your needs.
Performance
Redshift’s columnar storage format and MPP architecture enable it to deliver high-performance query execution for large-scale data warehousing workloads.
Security
Redshift provides a range of security features, including encryption at rest and in transit, network isolation using Amazon Virtual Private Cloud (VPC), and integration with AWS Identity and Access Management (IAM) for access control.
PostgreSQL Use Cases
Enterprise applications
PostgreSQL is a popular choice for large-scale enterprise applications due to its reliability, performance, and feature set.
GIS applications
With the PostGIS extension, PostgreSQL can be used for storing and analyzing geospatial data in applications like mapping, routing, and geocoding.
OLTP workloads
As a relational database, PostgreSQL is a good fit for pretty much any application that involves transactional workloads.
AWS Redshift Use Cases
Data Warehousing
Redshift is designed for large-scale data warehousing workloads, providing a scalable and high-performance solution for storing and analyzing structured data.
Business Intelligence and Reporting
Redshift integrates with various BI and reporting tools, enabling organizations to gain insights from their data and make data-driven decisions.
ETL and Data Integration
Redshift supports data loading and extraction, transformation, and loading (ETL) processes, allowing you to integrate data from various sources and prepare it for analysis.
PostgreSQL Pricing Model
PostgreSQL is open source software, and there are no licensing fees associated with its use. However, costs can arise from hardware, hosting, and operational expenses when deploying a self-managed PostgreSQL server. Several cloud-based managed PostgreSQL services, such as Amazon RDS, Google Cloud SQL, and Azure Database for PostgreSQL, offer different pricing models based on factors like storage, computing resources, and support.
AWS Redshift Pricing Model
Amazon Redshift offers two pricing models: On-Demand and Reserved Instances. With On-Demand pricing, you pay for the capacity you use on an hourly basis, with no long-term commitments. Reserved Instances offer the option to reserve capacity for a one- or three-year term, with a lower hourly rate compared to On-Demand pricing. In addition to these pricing models, you can also choose between different node types, which offer different amounts of storage, memory, and compute resources.
Get started with InfluxDB for free
InfluxDB Cloud is the fastest way to start storing and analyzing your time series data.