PostgreSQL vs Prometheus
A detailed comparison
Compare PostgreSQL and Prometheus for time series and OLAP workloads
Learn About Time Series DatabasesChoosing the right database is a critical choice when building any software application. All databases have different strengths and weaknesses when it comes to performance, so deciding which database has the most benefits and the most minor downsides for your specific use case and data model is an important decision. Below you will find an overview of the key concepts, architecture, features, use cases, and pricing models of PostgreSQL and Prometheus so you can quickly see how they compare against each other.
The primary purpose of this article is to compare how PostgreSQL and Prometheus perform for workloads involving time series data, not for all possible use cases. Time series data typically presents a unique challenge in terms of database performance. This is due to the high volume of data being written and the query patterns to access that data. This article doesn’t intend to make the case for which database is better; it simply provides an overview of each database so you can make an informed decision.
PostgreSQL vs Prometheus Breakdown
Database Model | Relational database |
Time series database |
Architecture | PostgreSQL can be deployed on various platforms, such as on-premises, in virtual machines, or as a managed cloud service like Amazon RDS, Google Cloud SQL, or Azure Database for PostgreSQL. |
Prometheus uses a pull-based model where it scrapes metrics from configured targets at given intervals. It stores time series data in a custom, efficient, local storage format, and supports multi-dimensional data collection, querying, and alerting. It can be deployed as a single binary on a server or on a container platform like Kubernetes. |
License | PostgreSQL license (similar to MIT or BSD) |
Apache 2.0 |
Use Cases | Web applications, geospatial data, business intelligence, analytics, content management systems, financial applications, scientific applications |
Monitoring, alerting, observability, system metrics, application metrics |
Scalability | Supports vertical scaling, horizontal scaling through partitioning, sharding, and replication using available tools |
Prometheus is designed for reliability and can scale vertically (single node with increased resources) or through federation (hierarchical setup where Prometheus servers scrape metrics from other Prometheus servers) |
Looking for the most efficient way to get started?
Whether you are looking for cost savings, lower management overhead, or open source, InfluxDB can help.
PostgreSQL Overview
PostgreSQL, also known as Postgres, is an open-source relational database management system that was first released in 1996. It has a long history of being a robust, reliable, and feature-rich database system, widely used in various industries and applications. PostgreSQL is known for its adherence to the SQL standard and extensibility, which allows users to define their own data types, operators, and functions. It is developed and maintained by a dedicated community of contributors and is available on multiple platforms, including Windows, Linux, and macOS.
Prometheus Overview
Prometheus is an open-source monitoring and alerting toolkit initially developed at SoundCloud in 2012. It has since become a widely adopted monitoring solution and a part of the Cloud Native Computing Foundation (CNCF) project. Prometheus focuses on providing real-time insights and alerts for containerized and microservices-based environments. Its primary use case is monitoring infrastructure and applications, with an emphasis on reliability and scalability.
PostgreSQL for Time Series Data
PostgreSQL can be used for time series data storage and analysis, although it was not specifically designed for this use case. With its rich set of data types, indexing options, and window function support, PostgreSQL can handle time series data. However, Postgres will not be as optimized for time series data as specialized time series databases when it comes to things like data compression, write throughput, and query speed. PostgreSQL also lacks a number of features that are useful for working with time series data like downsampling, retention policies, and custom SQL functions for time series data analysis.
Prometheus for Time Series Data
Prometheus is specifically designed for time series data, as its primary focus is on monitoring and alerting based on the state of infrastructure and applications. It uses a pull-based model, where the Prometheus server scrapes metrics from the target systems at regular intervals. This model is suitable for monitoring dynamic environments, as it allows for automatic discovery and monitoring of new instances. However, Prometheus is not intended as a general-purpose time series database and might not be the best choice for high cardinality or long-term data storage.
PostgreSQL Key Concepts
- MVCC: Multi-Version Concurrency Control is a technique used by PostgreSQL to allow multiple transactions to be executed concurrently without conflicts or locking.
- WAL: Write-Ahead Logging is a method used to ensure data durability by logging changes to a journal before they are written to the main data files.
- TOAST: The Oversized-Attribute Storage Technique is a mechanism for storing large data values in a separate table to reduce the main table’s disk space consumption.
Prometheus Key Concepts
- Metric: A numeric representation of a particular aspect of a system, such as CPU usage or memory consumption.
- Time Series: A collection of data points for a metric, indexed by timestamp.
- Label: A key-value pair that provides metadata and context for a metric, enabling more granular querying and aggregation.
- PromQL: Prometheus uses its own query language called PromQL (Prometheus Query Language) for querying time series data and generating alerts.
PostgreSQL Architecture
PostgreSQL is a client-server relational database system that uses the SQL language for querying and manipulation. It employs a process-based architecture, with each connection to the database being handled by a separate server process. This architecture provides isolation between different users and sessions. PostgreSQL supports ACID transactions and uses a combination of MVCC, WAL, and other techniques to ensure data consistency, durability, and performance. It also supports various extensions and external modules to enhance its functionality.
Prometheus Architecture
Prometheus is a single-server, standalone monitoring system that uses a pull-based approach to collect metrics from target systems. It stores time series data in a custom, highly compressed, on-disk format, optimized for fast querying and low resource usage. The architecture of Prometheus is modular and extensible, with components like exporters, service discovery mechanisms, and integrations with other monitoring systems. As a non-distributed system, it lacks built-in clustering or horizontal scalability, but it supports federation, allowing multiple Prometheus servers to share and aggregate data.
Free Time-Series Database Guide
Get a comprehensive review of alternatives and critical requirements for selecting yours.
PostgreSQL Features
Extensibility
PostgreSQL allows users to define custom data types, operators, and functions, making it highly adaptable to specific application requirements.
Full-text search
PostgreSQL has built-in support for full-text search, enabling users to perform complex text-based queries and analyses.
Geospatial support
With the PostGIS extension, PostgreSQL can store and manipulate geospatial data, making it suitable for GIS applications.
Prometheus Features
Pull-based Model
Prometheus collects metrics by actively scraping targets, enabling automatic discovery and monitoring of dynamic environments.
PromQL
The powerful Prometheus Query Language allows for expressive and flexible querying of time series data.
Alerting
Prometheus supports alerting based on user-defined rules and integrates with various alert management and notification systems.
PostgreSQL Use Cases
Enterprise applications
PostgreSQL is a popular choice for large-scale enterprise applications due to its reliability, performance, and feature set.
GIS applications
With the PostGIS extension, PostgreSQL can be used for storing and analyzing geospatial data in applications like mapping, routing, and geocoding.
OLTP workloads
As a relational database, PostgreSQL is a good fit for pretty much any application that involves transactional workloads.
Prometheus Use Cases
Infrastructure Monitoring
Prometheus is widely used for monitoring the health and performance of containerized and microservices-based infrastructure, including Kubernetes and Docker environments.
Application Performance Monitoring (APM)
Prometheus can collect custom application metrics using client libraries and monitor application performance in real-time.
Alerting and Anomaly Detection
Prometheus enables organizations to set up alerts based on specific thresholds or conditions, helping them identify and respond to potential issues or anomalies quickly.
PostgreSQL Pricing Model
PostgreSQL is open source software, and there are no licensing fees associated with its use. However, costs can arise from hardware, hosting, and operational expenses when deploying a self-managed PostgreSQL server. Several cloud-based managed PostgreSQL services, such as Amazon RDS, Google Cloud SQL, and Azure Database for PostgreSQL, offer different pricing models based on factors like storage, computing resources, and support.
Prometheus Pricing Model
Prometheus is an open-source project, and there are no licensing fees associated with its use. However, costs can arise from hardware, hosting, and operational expenses when deploying a self-managed Prometheus server. Additionally, several cloud-based managed Prometheus services, such as Grafana Cloud and Weave Cloud, offer different pricing models based on factors like data retention, query rate, and support.
Get started with InfluxDB for free
InfluxDB Cloud is the fastest way to start storing and analyzing your time series data.