Apache Pinot vs VictoriaMetrics
A detailed comparison
Compare Apache Pinot and VictoriaMetrics for time series and OLAP workloads
Learn About Time Series DatabasesChoosing the right database is a critical choice when building any software application. All databases have different strengths and weaknesses when it comes to performance, so deciding which database has the most benefits and the most minor downsides for your specific use case and data model is an important decision. Below you will find an overview of the key concepts, architecture, features, use cases, and pricing models of Apache Pinot and VictoriaMetrics so you can quickly see how they compare against each other.
The primary purpose of this article is to compare how Apache Pinot and VictoriaMetrics perform for workloads involving time series data, not for all possible use cases. Time series data typically presents a unique challenge in terms of database performance. This is due to the high volume of data being written and the query patterns to access that data. This article doesn’t intend to make the case for which database is better; it simply provides an overview of each database so you can make an informed decision.
Apache Pinot vs VictoriaMetrics Breakdown
Database Model | Columnar database |
Time series database |
Architecture | Pinot can be deployed on-premises, in the cloud, or using a managed service |
VictoriaMetrics can be deployed as a single-node instance for small-scale applications or as a clustered setup for large-scale applications, offering horizontal scalability and replication. |
License | Apache 2.0 |
Apache 2.0 |
Use Cases | Real-time analytics, OLAP, user behavior analytics, clickstream analysis, ad tech, log analytics |
Monitoring, observability, IoT, real-time analytics, DevOps, application performance monitoring |
Scalability | Horizontally scalable, supports distributed architectures for high availability and performance |
Horizontally scalable, supports clustering and replication for high availability and performance |
Looking for the most efficient way to get started?
Whether you are looking for cost savings, lower management overhead, or open source, InfluxDB can help.
Apache Pinot Overview
Apache Pinot is a real-time distributed OLAP datastore, designed to answer complex analytical queries with low latency. It was initially developed at LinkedIn and later open-sourced in 2015. Pinot is well-suited for handling large-scale data and real-time analytics, providing near-instantaneous responses to complex queries on large datasets. It is used by several large organizations, such as LinkedIn, Microsoft, and Uber.
VictoriaMetrics Overview
VictoriaMetrics is an open source time series database developed by the company VictoriaMetrics. The database aims to assist individuals and organizations in addressing their big data challenges by providing state-of-the-art monitoring and observability solutions. VictoriaMetrics is designed to be a fast, cost-effective, and scalable monitoring solution and time series database.
Apache Pinot for Time Series Data
Apache Pinot is a solid choice for working with time series data due to its columnar storage and real-time ingestion capabilities. Pinot’s ability to ingest data from streams like Apache Kafka ensures that time series data can be analyzed as it is being generated, in addition to having options for bulk ingesting data.
VictoriaMetrics for Time Series Data
VictoriaMetrics is designed for time series data, making it a solid choice for applications that involve the storage and analysis of time-stamped data. It provides high-performance storage and retrieval capabilities, enabling efficient handling of large volumes of time series data.
Apache Pinot Key Concepts
- Segment: A segment is the basic unit of data storage in Pinot. It is a columnar storage format that contains a subset of the table’s data.
- Table: A table in Pinot is a collection of segments.
- Controller: The controller manages the metadata and orchestrates data ingestion, query execution, and cluster management.
- Broker: The broker is responsible for receiving queries, routing them to the appropriate servers, and returning the results to the client.
- Server: The server stores segments and processes queries on those segments.
VictoriaMetrics Key Concepts
- Time Series: VictoriaMetrics stores data in the form of time series, which are sequences of data points indexed by time.
- Metric: A metric represents a specific measurement or observation that is tracked over time.
- Tag: Tags are key-value pairs associated with a time series and are used for filtering and grouping data.
- Field: Fields contain the actual data values associated with a time series.
- Query Language: VictoriaMetrics supports its own query language, which allows users to retrieve and analyze time series data based on specific criteria.
Apache Pinot Architecture
Pinot is a distributed, columnar datastore that uses a hybrid data model, combining features of both NoSQL and SQL databases. Its architecture consists of three main components: Controller, Broker, and Server. The Controller manages metadata and cluster operations, while Brokers handle query routing and Servers store and process data. Pinot’s columnar storage format enables efficient compression and quick query processing.
VictoriaMetrics Architecture
VictoriaMetrics is available in two forms: Single-server-VictoriaMetrics and VictoriaMetrics Cluster. The Single-server-VictoriaMetrics is an all-in-one binary that is easy to use and maintain. It vertically scales well and can handle millions of metrics per second. On the other hand, VictoriaMetrics Cluster consists of components that allow for building horizontally scalable clusters, enabling high availability and scalability in demanding environments. The architecture of VictoriaMetrics enables users to choose the deployment option that best suits their needs and scale their database infrastructure as required.
Free Time-Series Database Guide
Get a comprehensive review of alternatives and critical requirements for selecting yours.
Apache Pinot Features
Real-time Ingestion
Pinot supports real-time data ingestion from Kafka and other streaming sources, allowing for up-to-date analytics.
Scalability
Pinot’s distributed architecture and partitioning capabilities enable horizontal scaling to handle large datasets and high query loads.
Low-latency Query Processing
Pinot’s columnar storage format and various performance optimizations allow for near-instantaneous responses to complex queries.
VictoriaMetrics Features
High performance
VictoriaMetrics is optimized for high-performance storage and retrieval of time series data. It can efficiently handle millions of metrics per second and offers fast query execution for real-time analysis.
Scalability
The architecture of VictoriaMetrics allows for both vertical and horizontal scalability, enabling users to scale their monitoring and time series database infrastructure as their data volume and demand grow.
Cost-effectiveness
VictoriaMetrics provides a cost-effective solution for managing time series data. Its efficient storage and query capabilities contribute to minimizing operational costs while maintaining high performance.
Apache Pinot Use Cases
Real-time Analytics
Pinot is designed to support real-time analytics, making it suitable for use cases that require up-to-date insights on large-scale data, such as monitoring and alerting systems, fraud detection, and recommendation engines.
Ad Tech and User Analytics
Apache Pinot is often used in the advertising technology and user analytics space, where low-latency, high-concurrency analytics are crucial for understanding user behavior, optimizing ad campaigns, and personalizing user experiences.
Anomaly Detection and Monitoring
Pinot’s real-time analytics capabilities make it suitable for anomaly detection and monitoring use cases, enabling users to identify unusual patterns or trends in their data and take corrective action as needed.
VictoriaMetrics Use Cases
Monitoring and Observability
VictoriaMetrics is widely used for monitoring and observability purposes, allowing organizations to collect, store, and analyze metrics and performance data from various systems and applications. It provides the necessary tools and capabilities to track and visualize key performance indicators, troubleshoot issues, and gain insights into system behavior.
IoT Data Management
VictoriaMetrics is suitable for handling large volumes of time series data generated by IoT devices. It can efficiently store and process sensor data, enabling real-time monitoring and analysis of IoT ecosystems. VictoriaMetrics allows for tracking and analyzing data from factories, manufacturing plants, satellites, and other IoT devices.
Capacity Planning
VictoriaMetrics enables retrospective analysis and forecasting of metrics for capacity planning purposes. It allows organizations to analyze historical data, identify patterns and trends, and make informed decisions about resource allocation and future capacity requirements.
Apache Pinot Pricing Model
As an open-source project, Apache Pinot is free to use. However, organizations may incur costs related to hardware, infrastructure, and support when deploying and managing a Pinot cluster. There are no specific pricing options or deployment models tied to Apache Pinot itself.
VictoriaMetrics Pricing Model
VictoriaMetrics is an open source project, which means it is available for free usage and doesn’t require any licensing fees. Users can download the binary releases, Docker images, or source code to set up and deploy VictoriaMetrics without incurring any direct costs. VictoriaMetrics also has paid offerings for on-prem Enterprise products and managed VictoriaMetrics instances.
Get started with InfluxDB for free
InfluxDB Cloud is the fastest way to start storing and analyzing your time series data.