Apache Pinot vs TimescaleDB
A detailed comparison
Compare Apache Pinot and TimescaleDB for time series and OLAP workloads
Learn About Time Series DatabasesChoosing the right database is a critical choice when building any software application. All databases have different strengths and weaknesses when it comes to performance, so deciding which database has the most benefits and the most minor downsides for your specific use case and data model is an important decision. Below you will find an overview of the key concepts, architecture, features, use cases, and pricing models of Apache Pinot and TimescaleDB so you can quickly see how they compare against each other.
The primary purpose of this article is to compare how Apache Pinot and TimescaleDB perform for workloads involving time series data, not for all possible use cases. Time series data typically presents a unique challenge in terms of database performance. This is due to the high volume of data being written and the query patterns to access that data. This article doesn’t intend to make the case for which database is better; it simply provides an overview of each database so you can make an informed decision.
Apache Pinot vs TimescaleDB Breakdown
Database Model | Columnar database |
Time Series Database |
Architecture | Pinot can be deployed on-premises, in the cloud, or using a managed service |
TimescaleDB is built on top of PostgreSQL and inherits its architecture. It extends PostgreSQL with time-series-specific optimizations and functions, allowing it to manage time series data efficiently. It can be deployed as a single node, in a multi-node setup, or in the cloud as a managed service. |
License | Apache 2.0 |
Timescale License (for TimescaleDB Community Edition); Apache 2.0 (for core PostgreSQL) |
Use Cases | Real-time analytics, OLAP, user behavior analytics, clickstream analysis, ad tech, log analytics |
Monitoring, observability, IoT, real-time analytics, financial market data |
Scalability | Horizontally scalable, supports distributed architectures for high availability and performance |
Horizontally scalable through native support for partitioning, replication, and sharding. Offers multi-node capabilities for distributing data and queries across nodes. |
Looking for the most efficient way to get started?
Whether you are looking for cost savings, lower management overhead, or open source, InfluxDB can help.
Apache Pinot Overview
Apache Pinot is a real-time distributed OLAP datastore, designed to answer complex analytical queries with low latency. It was initially developed at LinkedIn and later open-sourced in 2015. Pinot is well-suited for handling large-scale data and real-time analytics, providing near-instantaneous responses to complex queries on large datasets. It is used by several large organizations, such as LinkedIn, Microsoft, and Uber.
TimescaleDB Overview
TimescaleDB is an open source time series database built on top of PostgreSQL. It was created to address the challenges of managing time series data, such as scalability, query performance, and data retention policies. TimescaleDB was first released in 2017 and has since become a popular choice for storing and analyzing time series data due to its PostgreSQL compatibility, performance optimizations, and flexible data retention policies.
Apache Pinot for Time Series Data
Apache Pinot is a solid choice for working with time series data due to its columnar storage and real-time ingestion capabilities. Pinot’s ability to ingest data from streams like Apache Kafka ensures that time series data can be analyzed as it is being generated, in addition to having options for bulk ingesting data.
TimescaleDB for Time Series Data
TimescaleDB is specifically designed for time series data, making it a natural choice for storing and querying such data. It provides several advantages for time series data management like horizontal scalability, columnar storage, and retention policy support. However, TimescaleDB may not be the best choice for all time series use cases. One example would be if an application requires very high write throughput or real-time analytics, other specialized time series databases like InfluxDB may be more suitable.
Apache Pinot Key Concepts
- Segment: A segment is the basic unit of data storage in Pinot. It is a columnar storage format that contains a subset of the table’s data.
- Table: A table in Pinot is a collection of segments.
- Controller: The controller manages the metadata and orchestrates data ingestion, query execution, and cluster management.
- Broker: The broker is responsible for receiving queries, routing them to the appropriate servers, and returning the results to the client.
- Server: The server stores segments and processes queries on those segments.
TimescaleDB Key Concepts
- Hypertable: A hypertable is a distributed table that is partitioned by time and possibly other dimensions, such as device ID or location. It is the primary abstraction for storing time series data in TimescaleDB and is designed to scale horizontally across multiple nodes.
- Chunk: A chunk is a partition of a hypertable, containing a subset of the hypertable’s data. Chunks are created automatically by TimescaleDB based on a specified time interval and can be individually compressed, indexed, and backed up for better performance and data management.
- Distributed Hypertables: For large-scale deployments, TimescaleDB supports distributed hypertables, which partition data across multiple nodes for improved query performance and fault tolerance.
Apache Pinot Architecture
Pinot is a distributed, columnar datastore that uses a hybrid data model, combining features of both NoSQL and SQL databases. Its architecture consists of three main components: Controller, Broker, and Server. The Controller manages metadata and cluster operations, while Brokers handle query routing and Servers store and process data. Pinot’s columnar storage format enables efficient compression and quick query processing.
TimescaleDB Architecture
TimescaleDB is an extension built on PostgreSQL, inheriting its relational data model and SQL support. However, TimescaleDB extends PostgreSQL with custom data structures and optimizations for time series data, such as hypertables and chunks.
Free Time-Series Database Guide
Get a comprehensive review of alternatives and critical requirements for selecting yours.
Apache Pinot Features
Real-time Ingestion
Pinot supports real-time data ingestion from Kafka and other streaming sources, allowing for up-to-date analytics.
Scalability
Pinot’s distributed architecture and partitioning capabilities enable horizontal scaling to handle large datasets and high query loads.
Low-latency Query Processing
Pinot’s columnar storage format and various performance optimizations allow for near-instantaneous responses to complex queries.
TimescaleDB Features
Partitioning
TimescaleDB automatically partitions time series data tables using hypertables and chunks, which simplifies data management and improves query performance.
Time series focused SQL functions
TimescaleDB provides several specialized SQL functions and operators for time series data application scenarios, such as time_bucket, first, and last, which simplify querying and aggregating time series data.
Query optimization
As mentioned earlier, TimescaleDB extends PostgreSQL’s query planner for writing and querying time series data, including optimizations like time-based indexing and chunk pruning.
Apache Pinot Use Cases
Real-time Analytics
Pinot is designed to support real-time analytics, making it suitable for use cases that require up-to-date insights on large-scale data, such as monitoring and alerting systems, fraud detection, and recommendation engines.
Ad Tech and User Analytics
Apache Pinot is often used in the advertising technology and user analytics space, where low-latency, high-concurrency analytics are crucial for understanding user behavior, optimizing ad campaigns, and personalizing user experiences.
Anomaly Detection and Monitoring
Pinot’s real-time analytics capabilities make it suitable for anomaly detection and monitoring use cases, enabling users to identify unusual patterns or trends in their data and take corrective action as needed.
TimescaleDB Use Cases
Monitoring and metrics
TimescaleDB is well-suited for storing and analyzing monitoring and metrics data, such as server performance metrics, application logs, and sensor data. Its hypertable structure and query optimizations make it easy to store, query, and visualize large volumes of time series data.
IoT data storage
TimescaleDB can be used to store and analyze IoT data, such as sensor readings and device status information. Its support for automatic partitioning and specialized SQL interfaces simplifies the management and querying of large-scale IoT datasets.
Financial data
TimescaleDB is suitable for storing and analyzing financial data, such as stock prices, exchange rates, and trading volumes. Its query optimizations and specialized SQL functions make it easy to perform time-based aggregations and analyze trends in financial data.
Apache Pinot Pricing Model
As an open-source project, Apache Pinot is free to use. However, organizations may incur costs related to hardware, infrastructure, and support when deploying and managing a Pinot cluster. There are no specific pricing options or deployment models tied to Apache Pinot itself.
TimescaleDB Pricing Model
TimescaleDB is available in two editions: TimescaleDB Open Source and TimescaleDB Cloud. The open-source edition is free to use and can be self-hosted, while the cloud edition is a managed service with a pay-as-you-go pricing model based on storage, compute, and data transfer usage. TimescaleDB Cloud offers various pricing tiers with different levels of resources and features, such as continuous backups and high availability.
Get started with InfluxDB for free
InfluxDB Cloud is the fastest way to start storing and analyzing your time series data.