Choosing the right database is a critical choice when building any software application. All databases have different strengths and weaknesses when it comes to performance, so deciding which database has the most benefits and the most minor downsides for your specific use case and data model is an important decision. Below you will find an overview of the key concepts, architecture, features, use cases, and pricing models of OSI PI Data Historian and TDengine so you can quickly see how they compare against each other.

The primary purpose of this article is to compare how OSI PI Data Historian and TDengine perform for workloads involving time series data, not for all possible use cases. Time series data typically presents a unique challenge in terms of database performance. This is due to the high volume of data being written and the query patterns to access that data. This article doesn’t intend to make the case for which database is better; it simply provides an overview of each database so you can make an informed decision.

OSI PI Data Historian vs TDengine Breakdown


 
Database Model

Time series database/data historian

Time series database

Architecture

OSIsoft PI System is a suite of software products designed for real-time data collection, storage, and analysis of time series data in industrial environments. The PI System is built around the PI Server, which stores, processes, and serves data to clients, and it can be deployed on-premises or in the cloud.

TDengine can be deployed on-premises, in the cloud, or as a hybrid solution, allowing flexibility in deployment and management.

License

Closed source

AGPL 3.0

Use Cases

Industrial data management, real-time monitoring, asset health tracking, predictive maintenance, energy management

IoT data storage, industrial monitoring, smart energy, smart home, monitoring and observability

Scalability

Supports horizontal scaling through distributed architecture, data replication, and data federation for large-scale deployments

Horizontally scalable with clustering and built-in load balancing. TDengine also provides decoupled compute and storage as well as object storage support for data tiering in some versions

Looking for the most efficient way to get started?

Whether you are looking for cost savings, lower management overhead, or open source, InfluxDB can help.

OSI PI Data Historian Overview

OSI PI, also known as OSIsoft PI System, is an enterprise-level data management and analytics platform specifically designed for handling time series data from industrial processes, sensors, and other sources. Developed by OSIsoft (acquired by AVEVA in 2021), the PI System has been widely used in various industries such as energy, manufacturing, utilities, and pharmaceuticals since its introduction in the 1980s. It provides the ability to collect, store, analyze, and visualize large volumes of time series data in real-time, allowing organizations to gain insights, optimize processes, and improve decision-making.

TDengine Overview

TDengine is a high-performance, open source time series database designed to handle massive amounts of time series data efficiently. It was created by TAOS Data in 2017 and is specifically designed for Internet of Things (IoT), Industrial IoT, and IT infrastructure monitoring use cases. TDengine has a unique hybrid architecture that combines the advantages of both relational and NoSQL databases, providing high performance, easy-to-use SQL for querying, and flexible data modeling capabilities.


OSI PI Data Historian for Time Series Data

OSI PI was created for storing time series data, making it an ideal choice for organizations that need to manage large volumes of sensor and process data. Its architecture and components are optimized for collecting, storing, and analyzing time series data with high efficiency and minimal latency. The PI System’s scalability and performance make it a suitable solution for organizations dealing with vast amounts of data generated by industrial processes, IoT devices, or other sources.

TDengine for Time Series Data

TDengine is designed from the ground up as a time series database, so it will be a good fit for most use cases that heavily involve storing and analyzing time series data.


OSI PI Data Historian Key Concepts

  • PI Server: The core component of the PI System, responsible for data collection, storage, and management.
  • PI Interfaces and PI Connectors: Software components that collect data from various sources and send it to the PI Server.
  • PI Asset Framework: A modeling framework that allows users to create a hierarchical structure of assets and their associated metadata, making it easier to understand and analyze data.
  • PI DataLink: An add-in for Microsoft Excel that enables users to access and analyze PI System data directly from Excel.
  • PI ProcessBook: A visualization tool for creating interactive, graphical displays of PI System data.

TDengine Key Concepts

  • Super Table: A template for creating multiple tables with the same schema. It’s similar to the concept of table inheritance in some other databases.
  • Sub Table: A table created based on a Super Table, inheriting its schema. Sub Tables can have additional tags for categorization and querying purposes.
  • Tag: A metadata attribute used to categorize and filter Sub Tables in a Super Table. Tags are indexed and optimized for efficient querying.


OSI PI Data Historian Architecture

OSI PI is a data management platform built around the PI Server, which is responsible for data collection, storage, and management. The PI System uses a highly efficient, proprietary time series database to store data. PI Interfaces and PI Connectors collect data from various sources and send it to the PI Server. The PI Asset Framework (AF) allows users to model their assets and their associated data in a hierarchical structure, making it easier to understand and analyze the data. Various client tools, such as PI DataLink and PI ProcessBook, enable users to access and visualize data stored in the PI System.

TDengine Architecture

TDengine uses a cloud native architecture that combines the advantages of relational databases (support for SQL querying) and NoSQL databases (scalability and flexibility).

Free Time-Series Database Guide

Get a comprehensive review of alternatives and critical requirements for selecting yours.

OSI PI Data Historian Features

Data collection and storage

OSI PI’s PI Interfaces and PI Connectors enable seamless data collection from a wide variety of sources, while the PI Server efficiently stores and manages the data.

Scalability

The PI System is highly scalable, allowing organizations to handle large volumes of data and a growing number of data sources without compromising performance.

Asset modeling

The PI Asset Framework (AF) provides a powerful way to model assets and their associated data, making it easier to understand and analyze complex industrial processes.

Data visualization

Tools like PI DataLink and PI ProcessBook enable users to analyze and visualize data stored in the PI System, facilitating better decision-making and process optimization.

TDengine Features

Data ingestion

TDengine supports high-speed data ingestion, with the ability to handle millions of data points per second. It supports batch and individual data insertion.

Data querying

TDengine provides ANSI SQL support with additional that allows users to easily query time series data using familiar SQL syntax. It supports various aggregation functions, filtering, and joins.

Data retention and compression

TDengine automatically compresses data to save storage space and provides data retention policies to automatically delete old data.


OSI PI Data Historian Use Cases

Process optimization

OSI PI can help organizations identify inefficiencies, monitor performance, and optimize their industrial processes by providing real-time insights into time series data from sensors and other sources.

Predictive maintenance

By analyzing historical data and detecting patterns or anomalies, OSI PI enables organizations to implement predictive maintenance strategies, reducing equipment downtime and maintenance costs.

Energy management

OSI PI can be used to track energy consumption across various assets and processes, allowing organizations to identify areas for improvement and implement energy-saving measures.

TDengine Use Cases

IoT data storage and analysis

TDengine is designed to handle massive amounts of time series data generated by IoT devices. Its high-performance ingestion, querying, and storage capabilities make it a suitable choice for IoT data storage and analysis.

Industrial IoT monitoring

TDengine can be used to store and analyze data from industrial IoT sensors and devices, helping organizations monitor equipment performance, detect anomalies, and optimize operations.

Infrastructure Monitoring

TDengine can be used to collect and analyze time series data from IT infrastructure components, such as servers, networks, and applications, facilitating real-time monitoring, alerting, and performance optimization.


OSI PI Data Historian Pricing Model

Pricing for OSI PI is typically based on a combination of factors such as the number of data sources, the number of users, and the level of support required. Pricing details are not publicly available, as they are provided on a quote basis depending on the specific needs of the organization.

TDengine Pricing Model

TDengine is open source and free to use under the AGPLv3 license. TDengine also offers commercial licenses and enterprise support options for organizations that require additional features, support, or compliance with specific licensing requirements.