MySQL vs OpenTSDB
A detailed comparison
Compare MySQL and OpenTSDB for time series and OLAP workloads
Learn About Time Series DatabasesChoosing the right database is a critical choice when building any software application. All databases have different strengths and weaknesses when it comes to performance, so deciding which database has the most benefits and the most minor downsides for your specific use case and data model is an important decision. Below you will find an overview of the key concepts, architecture, features, use cases, and pricing models of MySQL and OpenTSDB so you can quickly see how they compare against each other.
The primary purpose of this article is to compare how MySQL and OpenTSDB perform for workloads involving time series data, not for all possible use cases. Time series data typically presents a unique challenge in terms of database performance. This is due to the high volume of data being written and the query patterns to access that data. This article doesn’t intend to make the case for which database is better; it simply provides an overview of each database so you can make an informed decision.
MySQL vs OpenTSDB Breakdown
Database Model | Relational database |
Time series database |
Architecture | MySQL uses a client-server model with a multi-layered server design. It supports the SQL query language and offers various storage engines, such as InnoDB and MyISAM, for different use cases. MySQL can be deployed on-premises, in the cloud, or as a managed service. |
OpenTSDB can be deployed on-premises or in the cloud, with HBase running on a distributed cluster of nodes. |
License | GNU General Public License v2 (for the open-source Community Edition) |
GNU LGPLv2.1 |
Use Cases | Web applications, e-commerce, data warehousing, content management systems, business applications |
Monitoring, observability, IoT, log data storage |
Scalability | Supports vertical scaling by adding more resources to a single node; horizontal scaling can be achieved through replication, sharding, and third-party tools |
Horizontally scalable across multiple nodes using HBase as its storage backend |
Looking for the most efficient way to get started?
Whether you are looking for cost savings, lower management overhead, or open source, InfluxDB can help.
MySQL Overview
MySQL is an open source relational database management system that was first released in 1995. It is one of the most popular databases worldwide due to its ease of use, reliability, and performance. MySQL is widely used for web applications, online transaction processing, and data warehousing. Oracle Corporation acquired MySQL in 2010, but it remains open source software with an active community of contributors.
OpenTSDB Overview
OpenTSDB (Open Time Series Database) is an open-source, distributed, and scalable time series database built on top of Apache HBase, a NoSQL database. OpenTSDB was designed to address the growing need for storing and processing large volumes of time series data generated by various sources, such as IoT devices, sensors, and monitoring systems. It was initially developed by StumbleUpon in 2010 and later became an independent project with an active community of contributors.
MySQL for Time Series Data
MySQL can be used for storing and analyzing time series data, but it will not be as efficient as a dedicated time series databases. MySQL’s flexibility and support for various indexing techniques can make it a suitable choice for small to medium sized time series datasets. For large-scale time series data workloads, with high write throughput or use cases where low latency queries are required, MySQL will tend to struggle unless highly customized.
OpenTSDB for Time Series Data
OpenTSDB is designed for time series data storage and analysis, making it an ideal choice for managing large scale time series datasets. Its architecture enables high write and query performance, and it can handle millions of data points per second with minimal resource consumption. OpenTSDB’s flexible querying capabilities allow users to perform complex analysis on time series data efficiently.
MySQL Key Concepts
- Table: A collection of related data organized in rows and columns, which is the primary structure for storing data in MySQL.
- Primary Key: A unique identifier for each row in a table, used to enforce data integrity and enable efficient querying.
- Foreign Key: A column or set of columns in a table that refers to the primary key in another table, used to establish relationships between tables.
OpenTSDB Key Concepts
- Data Point: A single measurement in time consisting of a timestamp, metric, value, and associated tags.
- Metric: A named value that represents a specific aspect of a system, such as CPU usage or temperature.
- Tags: Key-value pairs associated with data points that provide metadata and help categorize and query the data.
MySQL Architecture
MySQL is a relational database management system that uses SQL for defining and manipulating data. It follows the client-server model, where a MySQL server accepts connections from multiple clients and processes their queries. MySQL’s architecture includes a storage engine framework that allows users to choose from different storage engines, such as InnoDB, MyISAM, or Memory, to optimize the database for specific use cases.
OpenTSDB Architecture
OpenTSDB is built on top of Apache HBase, a distributed and scalable NoSQL database, and relies on its architecture for data storage and management. OpenTSDB stores time series data in HBase tables, with data points organized by metric, timestamp, and tags. The database uses a schema-less data model, which allows for flexibility when adding new metrics and tags. The OpenTSDB architecture also supports horizontal scaling by distributing data across multiple HBase nodes.
Free Time-Series Database Guide
Get a comprehensive review of alternatives and critical requirements for selecting yours.
MySQL Features
ACID compliance
MySQL supports transactions and adheres to the ACID (Atomicity, Consistency, Isolation, Durability) properties, ensuring data integrity and consistency.
Scalability
MySQL can scale both vertically and horizontally, depending on the storage engine and configuration.
Replication and high availability
MySQL supports various replication techniques, including master-slave and master-master replication, to provide high availability and fault tolerance.
OpenTSDB Features
Scalability
OpenTSDB’s distributed architecture allows for horizontal scaling, ensuring that the database can handle growing volumes of time series data.
Data Compression
OpenTSDB uses various compression techniques to reduce the storage footprint of time series data.
Query Language with time series support
OpenTSDB features a flexible query language that supports aggregation, downsampling, filtering, and other operations for analyzing time series data.
MySQL Use Cases
Web applications
MySQL is a popular choice for powering web applications, content management systems, and e-commerce platforms due to its flexibility, ease of use, and performance.
Online transaction processing (OLTP)
MySQL is suitable for OLTP systems that require high concurrency, fast response times, and support for transactions.
Data warehousing
While not specifically designed for data warehousing, MySQL can be used for small to medium-sized data warehouses, leveraging its support for indexing, partitioning, and other optimization techniques.
OpenTSDB Use Cases
Monitoring and Alerting
OpenTSDB is well-suited for large-scale monitoring and alerting systems that generate vast amounts of time series data from various sources.
IoT Data Storage
OpenTSDB can store and analyze time series data generated by IoT devices, such as sensors and smart appliances, enabling real-time insights and analytics.
Performance Analysis
OpenTSDB’s flexible querying capabilities make it an ideal choice for analyzing system and application performance metrics over time.
MySQL Pricing Model
MySQL is available in multiple editions with different feature sets and pricing models. The MySQL Community Edition is open source and free to use, while the MySQL Enterprise Edition includes additional features, such as advanced security, monitoring, and management tools, and requires a subscription. Pricing for the Enterprise Edition depends on the number of server instances and the level of support required.
OpenTSDB Pricing Model
OpenTSDB is open-source software, which means it is free to use without any licensing fees. However, the cost of running OpenTSDB depends on the infrastructure required to support the underlying HBase database, such as cloud services or on-premises hardware.
Get started with InfluxDB for free
InfluxDB Cloud is the fastest way to start storing and analyzing your time series data.